【bzoj3065】带插入区间K小值 替罪羊树套权值线段树

题目描述

从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i]。跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴。这时跳蚤国王决定理性愉悦一下,查询区间k小值。他每次向它的随从伏特提出这样的问题: 从左往右第x个到第y个跳蚤中,a[i]第k小的值是多少。
这可难不倒伏特,他在脑袋里使用函数式线段树前缀和的方法水掉了跳蚤国王的询问。
这时伏特发现有些跳蚤跳久了弹跳力会有变化,有的会增大,有的会减少。
这可难不倒伏特,他在脑袋里使用树状数组套线段树的方法水掉了跳蚤国王的询问。(orz 主席树)
这时伏特发现有些迟到的跳蚤会插入到这一行的某个位置上,他感到非常生气,因为……他不会做了。
请你帮一帮伏特吧。
快捷版题意:带插入、修改的区间k小值在线查询。

输入

第一行一个正整数n,表示原来有n只跳蚤排成一行做早操。
第二行有n个用空格隔开的非负整数,从左至右代表每只跳蚤的弹跳力。
第三行一个正整数q,表示下面有多少个操作。
下面一共q行,一共三种操作对原序列的操作:(假设此时一共m只跳蚤)
1. Q x y k: 询问从左至右第x只跳蚤到从左至右第y只跳蚤中,弹跳力第k小的跳蚤的弹跳力是多少。 (1 <= x <= y <= m, 1 <= k <= y - x + 1)
2. M x val: 将从左至右第x只跳蚤的弹跳力改为val。 (1 <= x <= m)
3. I x val: 在从左至右第x只跳蚤的前面插入一只弹跳力为val的跳蚤。即插入后从左至右第x只跳蚤是我刚插入的跳蚤。 (1 <= x <= m + 1)

为了体现在线操作,设lastAns为上一次查询的时候程序输出的结果,如果之前没有查询过,则lastAns = 0。
则输入的时候实际是:
Q _x _y _k ------> 表示 Q _x^lastAns _y^lastAns _k^lastAns
M _x _val  ------> 表示 M _x^lastAns _val^lastAns
I _x _val  ------> 表示 I _x^lastAns _val^lastAns
简单来说就是操作中输入的整数都要异或上一次询问的结果进行解码。

(祝Pascal的同学早日转C++,就不提供pascal版的描述了。)

输出

对于每个询问输出回答,每行一个回答。

样例输入

10
10 5 8 28 0 19 2 31 1 22
30
I 6 9
M 1 11
I 8 17
M 1 31
M 6 26
Q 2 7 6
I 23 30
M 31 7
I 22 27
M 26 18
Q 26 17 31
I 5 2
I 18 13
Q 3 3 3
I 27 19
Q 23 23 30
Q 5 13 5
I 3 0
M 15 27
Q 0 28 13
Q 3 29 11
M 2 8
Q 12 5 7
I 30 19
M 11 19
Q 17 8 29
M 29 4
Q 3 0 12
I 7 18
M 29 27

样例输出

28
2
31
0
14
15
14
27
15
14



题解

替罪羊树套权值线段树

替罪羊树:一种不基于旋转或分裂的平衡树,当某子树大小占其父亲子树大小超过一定比例时暴力重构。裸的替罪羊树的时间复杂度为均摊最坏$O(n\log n)$。由于其没有旋转或分裂的操作,因此常常被用于树套树的外层。

那么对于本题,由于有定点插入操作,因此需要使用某种平衡树。同时要查询区间k小值,所以还要使用某维护无序序列的数据结构。

考虑把它们套起来,那么平衡树需要放在外层,因为平衡树放在内层的话无法支持插入的同时查询排名在某区间内的数的个数。

由于平衡树放在了外层,因此不能选择大量旋转或分裂的平衡树。此时可以选择替罪羊树(据说Treap也可以,但非常麻烦)。

那么思路就很清晰了:对于外层替罪羊树的每一个节点,维护自己对应的权值线段树和整棵子树所有权值的权值线段树。插入、修改时在经过的点上修改,查询时把区间对应的每 个/堆 节点的权值线段树拿出来,放到一起跑线段树上二分即可。这两个操作的时间复杂度均为$O(n\log^2n)$。

而对于重构操作则较为复杂:替罪羊树最坏情况下重构的节点个数为$n\log n$,而每个节点要进行$\log n$次时间为$O(\log n)$的权值线段树上插入操作(原谅我不会完整保留两棵树的线段树合并),因此时间复杂度为$O(n\log^3n)$。实际上远小于这个理论极限复杂度。

总的理论极限时间复杂度为$O(n\log^3n)=O(能过)$。

这里有一个小优化:当一次插入使得多个地方需要重构时,只重构最上边的(即最大的子树),这样可以避免不必要的重构操作,降低常数。

另外本题需要垃圾回收否则炸空间。

#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define m 70000
#define N 70010
using namespace std;
struct scg
{
	int v , ls , rs , si , wr , tr;
}a[N];
struct seg
{
	int ls , rs , si;
}b[20000010];
queue<int> q;
char str[5];
int root , n , pos[N] , tot , qr[100] , qt;
void update(int p , int a , int l , int r , int &x)
{
	if(!x) x = q.front() , q.pop();
	b[x].si += a;
	if(!b[x].si) {x = 0; return;}
	if(l == r) return;
	int mid = (l + r) >> 1;
	if(p <= mid) update(p , a , l , mid , b[x].ls);
	else update(p , a , mid + 1 , r , b[x].rs);
}
void del(int &x)
{
	if(!x) return;
	q.push(x);
	del(b[x].ls) , del(b[x].rs) , b[x].si = 0 , x = 0;
}
int query(int k , int l , int r)
{
	if(l == r) return l;
	int mid = (l + r) >> 1 , i , sum = 0;
	for(i = 1 ; i <= qt ; i ++ ) sum += b[b[qr[i]].ls].si;
	if(k <= sum)
	{
		for(i = 1 ; i <= qt ; i ++ ) qr[i] = b[qr[i]].ls;
		return query(k , l , mid);
	}
	else
	{
		for(i = 1 ; i <= qt ; i ++ ) qr[i] = b[qr[i]].rs;
		return query(k - sum , mid + 1 , r);
	}
}
int build(int l , int r)
{
	if(l > r) return 0;
	int mid = (l + r) >> 1 , i;
	for(i = l ; i <= r ; i ++ ) update(a[pos[i]].v , 1 , 0 , m , a[pos[mid]].tr);
	a[pos[mid]].ls = build(l , mid - 1) , a[pos[mid]].rs = build(mid + 1 , r) , a[pos[mid]].si = r - l + 1;
	return pos[mid];
}
void dfs(int &x)
{
	if(!x) return;
	dfs(a[x].ls) , pos[++tot] = x , dfs(a[x].rs);
	a[x].si = 0 , del(a[x].tr) , x = 0;
}
void insert(int p , int &x , int v , bool flag)
{
	if(!x)
	{
		x = ++n , a[x].v = v , a[x].si = 1 , update(v , 1 , 0 , m , a[x].wr) , update(v , 1 , 0 , m , a[x].tr);
		return;
	}
	bool tag;
	update(v , 1 , 0 , m , a[x].tr) , a[x].si ++ ;
	if(p <= a[a[x].ls].si) tag = ((a[a[x].ls].si + 1) * 4 > (a[x].si + 1) * 3) , insert(p , a[x].ls , v , tag || flag);
	else tag = ((a[a[x].rs].si + 1) * 4 > (a[x].si + 1) * 3) , insert(p - a[a[x].ls].si - 1 , a[x].rs , v , tag || flag);
	if(!flag && tag) tot = 0 , dfs(x) , x = build(1 , tot);
}
int find(int p , int x)
{
	if(p <= a[a[x].ls].si) return find(p , a[x].ls);
	else if(p > a[a[x].ls].si + 1) return find(p - a[a[x].ls].si - 1 , a[x].rs);
	else return a[x].v;
}
void modify(int p , int x , int v1 , int v2)
{
	update(v1 , -1 , 0 , m , a[x].tr) , update(v2 , 1 , 0 , m , a[x].tr);
	if(p <= a[a[x].ls].si) modify(p , a[x].ls , v1 , v2);
	else if(p > a[a[x].ls].si + 1) modify(p - a[a[x].ls].si - 1 , a[x].rs , v1 , v2);
	else del(a[x].wr) , update(v2 , 1 , 0 , m , a[x].wr) , a[x].v = v2;
}
void split(int b , int e , int x)
{
	if(b <= 1 && e >= a[x].si)
	{
		qr[++qt] = a[x].tr;
		return;
	}
	if(b <= a[a[x].ls].si + 1 && e >= a[a[x].ls].si + 1) qr[++qt] = a[x].wr;
	if(b <= a[a[x].ls].si) split(b , e , a[x].ls);
	if(e > a[a[x].ls].si + 1) split(b - a[a[x].ls].si - 1 , e  - a[a[x].ls].si - 1 , a[x].rs);
}
int main()
{
	int k , i , x , y , z , last = 0;
	for(i = 1 ; i <= 20000000 ; i ++ ) q.push(i);
	scanf("%d" , &n);
	for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &a[i].v) , update(a[i].v , 1 , 0 , m , a[i].wr) , pos[i] = i;
	root = build(1 , n);
	scanf("%d" , &k);
	while(k -- )
	{
		scanf("%s%d%d" , str , &x , &y) , x ^= last , y ^= last;
		if(str[0] == ‘Q‘) qt = 0 , split(x , y , root) , scanf("%d" , &z) , z ^= last , printf("%d\n" , last = query(z , 0 , m));
		else if(str[0] == ‘M‘) modify(x , root , find(x , root) , y);
		else insert(x - 1 , root , y , 0);
	}
	return 0;
}
时间: 2024-10-06 01:14:36

【bzoj3065】带插入区间K小值 替罪羊树套权值线段树的相关文章

[BZOJ3065]带插入区间K小值 解题报告 替罪羊树+值域线段树

刚了一天的题终于切掉了,数据结构题的代码真**难调,这是我做过的第一道树套树题,做完后感觉对树套树都有阴影了......下面写一下做题记录. Portal Gun:[BZOJ3065]带插入区间k小值. 这道题的题面其实都提醒怎么做了,维护区间k小值用值域线段树,但要维护一个插入操作,树状数组套主席树也用不了,那么这道题还剩下平衡树可以搞,那就上平衡树吧. 我这里的做法,因为要维护序列的顺序,所以我这里用到替罪羊树套值域线段树:我们在替罪羊树的每个节点都套一颗值域线段树,记录以该节点为根的子树的

Bzoj3065 带插入区间K小值

Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 3436  Solved: 1103 Description 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一下,查询区间k小值.他每次向它的随从伏特提出这样的问题: 从左往右第x个到第y个跳蚤中,a[i]第k小的值是多少.这可难不倒伏特,他在脑袋里使用函数式线段树前缀和的方法水掉了跳蚤国王的询问.这时伏

【块状链表】【权值分块】bzoj3065 带插入区间K小值

显然是块状链表的经典题.但是经典做法的复杂度是O(n*sqrt(n)*log(n)*sqrt(log(n)))的,出题人明确说了会卡掉. 于是我们考虑每个块内记录前n个块的权值分块. 查询的时候差分什么的,复杂度就是O(n*sqrt(n))的了. 插入的时候为了防止块过大,要考虑裂块(细节较多). 感谢bzoj提供O2,我的STL块链才能通过(list+vector). #include<cstdio> #include<list> #include<vector> #

bzoj3065带插入区间K小值

这题其实好像很难,但是听werkeytom_ftd说可以用块链水,于是就很开心地去打了个块状链表套主席树,插入操作就直接插到一个块中,注意如果块的大小2*block就将块分开,注意每一个修改或插入都要修改后继的状态,贴代码: #include<iostream> #include<algorithm> #include<cstdio> #include<cmath> #include<cstring> #define fo(i,a,b) for(

bzoj 3065: 带插入区间K小值 替罪羊树 &amp;&amp; AC300

3065: 带插入区间K小值 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1062  Solved: 253[Submit][Status] Description 从 前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理性愉悦一 下,查询区间k小值.他每次向它的随从伏特提出这样的问题: 从左往右第x个到第y个跳蚤中,a[i]第k小的值是多少. 这可难不倒伏特,

bzoj 3065 带插入区间k小值

替罪羊树套权值线段树. 计数式垃圾回收. 复杂度nlog2^n. 写了半个冬令营. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<vector> 5 #include<algorithm> 6 #define N 10000005 7 #define alpha 0.75 8 using namespace std; 9 inline int read

BZOJ 3065 带插入区间K小值 替罪羊树套线段树

题目大意:带插入,单点修改的区间k小值在线查询. 思路:本年度做过最酸爽的题. 树套树的本质是一个外层不会动的树来套一个内层会动(或不会动)的树.两个树的时间复杂度相乘也就是差不多O(nlog^2n)左右.但是众所周知,高级数据结构经常会伴有庞大的常数,所以一般来说树套树的常数也不会小到哪去.所以在做这种题的时候先不要考虑常数的问题... 为什么要用替罪羊树呢?因为一般的平衡树都是会动的,这就很难办了.外层的树动了之后,内层的树肯定也是会动的.很显然,一般的二叉平衡树会经常会旋转,这样在动外层的

【BZOJ】3065: 带插入区间K小值

题意:带插入.修改的区间k小值在线查询.(原序列n<=35000, 询问<=175000) #include <bits/stdc++.h> using namespace std; const int nTr=1000005, nSg=15000005, alphaA=4, alphaB=5; int STop; struct Seg *Snull; struct Seg { Seg *l, *r; int s, cnt; }Sg[nSg], *iSg=Sg, *bin[nSg]

[bzoj3065] 带插入区间第k小值 [重量平衡树套线段树]

题面 传送门 思路 发现强制在线了...... 本来可以树套树解决的问题,现在外层不能使用线段树了,拿什么替代呢? 我们需要一种支持单点插入.下套数据结构.数据结构上传合并复杂度最多单log,不能旋转的数据结构 这不是摆明了用重量平衡树吗? 我选了替罪羊树作为上层结构,下面套了一棵线段树,就做完了 查询的时候把替罪羊树上对应的log个区间提取出来,一起在底层权值线段树上二分即可 详见代码注释 Code #include<iostream> #include<cstdio> #inc