模拟示例
示例 I
在世界上的许多城市和地区,空气质量都是令人关注的重要健康指标之一。在美国,众所周知,洛杉矶的空气质量不是很好,分布密集的监控网络每半天就对臭氧、微粒物质和其他污染物等数据进行一次收集。基于此空气质量数据,可获得每种污染物的浓度以及污染物每年超过州空气质量标准和联邦空气质量标准的天数。由于这两个测量值均支持对在某个特定区域内生活进行感染风险的局部评估,因此,每年超过临界阈值的天数可用来建立显示超过阈值概率的内插地图。
在本示例中,对 2005 年加利福尼亚州每个监测站臭氧超过阈值的天数做了调查,并通过拟合该数据创建了一个半变异函数。并使用条件模拟生成了多个实现。每个实现都是一个地图,用于表示 2005 年污染物超过阈值的天数。然后对这些实现进行后处理,以估计污染物每年超过州阈值的天数多于 10 天、20 天、30 天、40 天、50 天、60 天和70 天的概率(所有监测站记录的超过阈值的最大天数为 80 天)。下面的动画显示了生成的南海岸空气盆地地区(其中包括洛杉矶和内陆城市)的臭氧地图。海岸附近的空气质量明显好于内陆地区,主要是因为在这一地区,风向主要是由西向东吹。
这类地图可用于确定污染减轻策略的优先级,通过解答诸如“我可以忍受多少污染?”、“生活在某一特定区域我需要忍受多少污染?”等问题,来研究健康与环境质量之间的关系并帮助人们确定适宜居住的地点。
示例 II
在很多应用中,都使用与空间相关的变量作为模型的输入(例如,石油工程中的流动模拟)。在此类情况中,模型结果的不确定性是通过以下过程生成大量模拟来进行评估的:
为变量模拟大量具有同等可能性的实现。
使用模拟变量作为输入来运行模型(通常称为传输函数)。
汇总模型运行以评估模型输出的变异性。
输出的统计数据可用来测量模型的不确定性。
上述过程的一个实际示例是:为在新墨西哥州东南部成立一个废品隔离试验工场 (WIPP) 作为超铀废物的存储设施而进行的研究。
科学家曾对位于地表以下 2000 多英尺的盐矿床进行了评估,以便将其用作废料的潜在存储设施。然而,矿床刚好位于蓄水层之上,因此,担心地下水可能会传输站点泄露的废弃物。要证明 WIPP 是安全的,科学家不得不使美国环境保护局确信:蓄水层中地下水的流速非常缓慢,完全不可能对 周围环境造成污染。
导水系数值决定了蓄水层中的水流流速,并针对拟建的 WIPP 站点附近蓄水层获得了多个此类值。使用以数字方式求解的水文方程为地下水流建模,该方程需要导水系数值,该值在常规格网上进行预测。如果使用了导水系数的克里金估计值,则导水系数值将基于邻近导水系数值的(加权)平均值,而已建模的地下水的流动时间将只会基于这些平均值。由于克里金法将生成平滑地图,所以插值表面会缺少导水系数值极高或极低的区域。要正确地对风险进行分析,科学家必须考虑可能出现的最坏情况,因此需要生成流动时间值的整个概率分布。通过此分布,科学家将能够使用地下水流动时间分布的较低尾值(对应极高流速),而不是平均流动时间,来评估
WIPP 的适宜性。曾使用条件模拟来生成流动时间值的概率分布。
废品通过地下水进行传输的概率只是评估 WIPP 适宜性时考虑的众多危及人类健康情形中的一种。复杂风险分析在评估 WIPP 是否适宜进行核废料处理以及使公众和政府监管部门确信其适宜性方面起了很大作用。在长达 20 多年的时间里,在进行了大量的科学研究、公众意见收集以及进行了大量监管工作之后,WIPP 最终于 1999 年 3 月 26 日开始运作。