leetcode最长递增子序列问题

题目描写叙述:

给定一个数组,删除最少的元素,保证剩下的元素是递增有序的。

分析:

题目的意思是删除最少的元素。保证剩下的元素是递增有序的,事实上换一种方式想,就是寻找最长的递增有序序列。解法有非常多种,这里考虑用动态规划实现。

开辟一个额外的一维数组dp[]用来记录以每一个元素为结尾的最长子序列的长度。当然。还须要一个哈希表,用来保存最长子序列的元素。dp[i]表示以数组A[i]为结尾的最长子序列的长度。则不难得到例如以下的公式:

然后通过回溯哈希表把须要删除的元素删除就可以。

<span style="color:#000000;background-color: rgb(204, 204, 204);">public class Solution {
	ArrayList<Integer> minDelete(int A[]){
		ArrayList<Integer> res=new ArrayList<Integer>();
		HashMap<Integer, Integer> hash =new HashMap<Integer, Integer>();
		int dp[]=new int[A.length];//dp[i]记录以A[i]为结尾的最长递增子序列长度
		int count=0;
		int end=0;//最长递增子序列的最后一个元素
		for(int i=0;i<A.length;i++){
			dp[i]=1;
			for(int j=0;j<i;j++){
				if(A[i]>=A[j]){
					dp[i]=Math.max(dp[i], dp[j]+1);
					if(count<dp[i]){
						count=dp[i];
						hash.put(i, j);
						end=i;
					}
				}
			}
		}
		int k=A.length-1;
		while(k>=0){
			while(k>end){//增加须要被删除的元素
				res.add(A[k]);
				k--;
				}
			k--;
			if(hash.containsKey(end)){
				end=hash.get(end);
				}
				else
					end=-1;
		}
		return res;
	}
}</span>

Google了一下最长递增子序列,发现了一篇非常棒的博客,写得非常具体。

http://blog.csdn.net/joylnwang/article/details/6766317

并且该博客还给出了更加优化的解法,太棒了,这里mark一下。

时间: 2024-10-28 15:24:59

leetcode最长递增子序列问题的相关文章

leetcode 673. 最长递增子序列的个数 java

题目: 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7]输出: 2解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7].示例 2: 输入: [2,2,2,2,2]输出: 5解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5.注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. 解题: 方法:动态规划 假设对于以 nums[i] 结尾的序列,我们知道最长序列的长度 le

Leetcode 673.最长递增子序列的个数

最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7] 输出: 2 解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, 3, 5, 7]. 示例 2: 输入: [2,2,2,2,2] 输出: 5 解释: 最长递增子序列的长度是1,并且存在5个子序列的长度为1,因此输出5. 注意: 给定的数组长度不超过 2000 并且结果一定是32位有符号整数. 思路 定义 dp(n,1) cnt (n,1) 这里我用dp[i]

LeetCode 673. Number of Longest Increasing Subsequence 最长递增子序列的个数 (C++/Java)

题目: Given an unsorted array of integers, find the number of longest increasing subsequence. Example 1: Input: [1,3,5,4,7] Output: 2 Explanation: The two longest increasing subsequence are [1, 3, 4, 7] and [1, 3, 5, 7]. Example 2: Input: [2,2,2,2,2] O

最长公共子序列|最长公共子串|最长重复子串|最长不重复子串|最长回文子串|最长递增子序列|最大子数组和

参考:http://www.ahathinking.com/archives/124.html 最长公共子序列 1.动态规划解决过程 1)描述一个最长公共子序列 如果序列比较短,可以采用蛮力法枚举出X的所有子序列,然后检查是否是Y的子序列,并记录所发现的最长子序列.如果序列比较长,这种方法需要指数级时间,不切实际. LCS的最优子结构定理:设X={x1,x2,……,xm}和Y={y1,y2,……,yn}为两个序列,并设Z={z1.z2.……,zk}为X和Y的任意一个LCS,则: (1)如果xm=

动态规划之最长递增子序列

题目一:给定一个长度为N的数组,找出一个最长的单调递增子序列(不一定连续,但是顺序不能乱).并返回单调递增子序列的长度. 例如:给定一个长度为8的数组A{1,3,5,2,4,6,7,8},则其最长的单调递增子序列为{1,2,4,6,7,8},我们返回其长度6. 题目二:在题目一的基础上,我们要返回该子序列中的元素.例如,给定一个长度为8的数组A{1,3,5,2,4,6,7,8},我们返回的是单调递增子序列{1,2,4,6,7,8}. 解析:我们使用动态规划的思想来解决此问题,假设给定的数组为nu

HDU 3998 Sequence (最长递增子序列+最大流SAP,拆点法)经典

Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1666    Accepted Submission(s): 614 Problem Description There is a sequence X (i.e. x[1], x[2], ..., x[n]). We define increasing subsequ

算法面试题 之 最长递增子序列 LIS

找出最长递增序列 O(NlogN)(不一定连续!) 参考 http://www.felix021.com/blog/read.php?1587%E5%8F%AF%E6%98%AF%E8%BF%9E%E6%95%B0%E7%BB%84%E9%83%BD%E6%B2%A1%E7%BB%99%E5%87%BA%E6%9D%A5 我就是理解了一下他的分析 用更通俗易懂的话来说说题目是这样 d[1..9] = 2 1 5 3 6 4 8 9 7 要求找到最长的递增子序列首先用一个数组b[] 依次的将d里面

[网络流24题]最长递增子序列问题

题目大意:给定长度为n的序列a,求:1.最长递增子序列长度:2.最多选出几个不相交的最长递增子序列:3.最多选出几种在除了第1个和第n个以外的地方不相交的最长递增子序列.(n<=1000) 思路:先倒着DP,求出f[i]表示以a[i]开头的最长的递增子序列长度,然后建图,若f[i]=最长递增子序列长度则S向i连1,若f[i]=1则i向T连1,若i<j且a[i]<a[j]且f[i]=f[j]+1则i向j连1,为保证每个点只被流一次,拆成入点和出点,流量限制1,跑最大流即可解决第二问,点1和

最大子数组之和、最大子数组之积、最长递增子序列求法

昨天做爱奇艺笔试题,最后一道编程题是求整型数组最长递增子序列,由于时间关系,没有完全写出来,今天重新来做做这一系列题. <1> 最大子数组之和 首先从最简单的最大子数组之和求取.数组里有正数.负数.零.设包含第 i 个元素的子数组的和为 Sum,则Sum的值为 Sum(i) = Sum(i-1) + arrey[i]; 显然如果arrey[i]<=0,则Sum(i)<=Sum(i-1);则必须把Sum(i)=arrey[i];同时maxSum用来保存Sum最大值.时间复杂度为o(n