SVM python小样例

SVM有很多种实现,但是本章只关注其中最流行的一种实现,即序列最小化(SMO)算法
在此之后,我们将介绍如何使用一种称为核函数的方式将SVM扩展到更多的数据集上
基于最大间隔的分割数据
优点:泛化错误率低,计算开销不大,结果易解释
缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题
适用数据类型:数值型和标称型数据
寻找最大间隔:
分割超平面的形式可以写成W^T *x+b,要计算点A到分割超平面的距离,就必须给出点
到分割面的法线或垂线的长度,该值为|w^T+b|/||w||.这里的常数b类似于Logistic回
归中的结局w0 .
SVM的类别标签采用的是1和-1,而不是0和1,这是为什么呢?
这是由于-1和+1仅仅相差一个符号,方便数学上的处理,实质上是和目标函数的选取(算法的判别函数)有关。
当计算数据点到分割面的距离并确定分割面的放置位置时,间隔通过label*(W^T *x+b)来计算,这是就能体
现出-1和+1的好处了。即只要判断正确,判别条件总是大于1.
至此,一切都很完美,但是这里有个假设:数据必须100%线性可分。目前为止,物品们直到几乎所有数据
都不那么“干净”。这时,我们就可以通过引入所谓的松弛i按量,来允许有些数据点可以处于分割面的错误一侧。
SVM应用的一般框架
SVM的一般流程
(1)收集数据:可以适用任意方法
(2)准备数据:需要数值型数据
(3)分析数据:有助于可视化分割 超平面
(4)训练算法:SVM的大部分时间都源自训练,该过程主要实现两个参数的调优
(5)测试算法:十分简单的计算过程就可以实现
(6)使用算法:几乎所有分类问题都可以使用SVM,值得一提的是,SVM本身是一个二类分类器,对多类问题
应用SVM需要对代码做一些修改。
SMO表示序列的最小优化,这些小优化问题往往容易为蟹,并且对他们进行顺序求解的结果将与他们作为整
体来求解的结果完全一致。在结果完全相同时,SMO算法的求解时间最短。
SMO算法的求解目标是求一系列的alpha和b,一旦求出alpha,就很容易计算出权重向量w并得到分割超平面
SMO算法的工作原理是:每次循环中选择两个alpha进行优化处理。一旦找到一对合适的alpha,那么就增大
其中一个同时减小另一个。这里所谓的“合适”就是指两个alpha必须符合一定的条件,条件之一就是这两个
alpha必须要在间隔边界之外,而其第二个条件则是这两个alpha还没有进行过区间化或者不再边界上。

  1 from numpy import *
  2 from time import sleep
  3
  4 def loadDataSet(fileName):
  5     dataMat = []; labelMat = []
  6     fr = open(fileName)
  7     for line in fr.readlines():
  8         lineArr = line.strip().split(‘\t‘)
  9         dataMat.append([float(lineArr[0]), float(lineArr[1])])
 10         labelMat.append(float(lineArr[2]))
 11     return dataMat,labelMat
 12
 13 #i是第一个alpha的下标,m是所有alpha的数目。只要函数值不等于输入值i,函数就会进行随机选择。
 14 def selectJrand(i,m):
 15     j=i #we want to select any J not equal to i
 16     while (j==i):
 17         j = int(random.uniform(0,m))
 18     return j
 19
 20 #该函数用于调整大于H或小于L的alpha值。
 21 def clipAlpha(aj,H,L):
 22     if aj > H:
 23         aj = H
 24     if L > aj:
 25         aj = L
 26     return aj
 27
 28 ‘‘‘
 29 创建一个alpha向量并将其初始化为0向量
 30 当迭代次数小于最大迭代次数时(外循环)
 31     对数据集中的每个数据向量(内循环):
 32     如果该数据向量可以被优化:
 33         随机选择另外一个数据向量
 34         同时优化这两个向量
 35         如果两个向量都不能被优化,退出内循环
 36 如果所有向量都没被优化,增加迭代数目,继续下一次循环
 37 ‘‘‘
 38 def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
 39     dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()
 40     b = 0; m,n = shape(dataMatrix)
 41     alphas = mat(zeros((m,1)))
 42     iter = 0
 43     while (iter < maxIter):
 44         alphaPairsChanged = 0
 45         for i in range(m):
 46             fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b
 47             Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions
 48             if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):
 49                 j = selectJrand(i,m)
 50                 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b
 51                 Ej = fXj - float(labelMat[j])
 52                 alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();
 53                 if (labelMat[i] != labelMat[j]):
 54                     L = max(0, alphas[j] - alphas[i])
 55                     H = min(C, C + alphas[j] - alphas[i])
 56                 else:
 57                     L = max(0, alphas[j] + alphas[i] - C)
 58                     H = min(C, alphas[j] + alphas[i])
 59                 if L==H: print("L==H"); continue
 60                 eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
 61                 if eta >= 0: print("eta>=0"); continue
 62                 alphas[j] -= labelMat[j]*(Ei - Ej)/eta
 63                 alphas[j] = clipAlpha(alphas[j],H,L)
 64                 if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue
 65                 alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j
 66                                                                         #the update is in the oppostie direction
 67                 b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
 68                 b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
 69                 if (0 < alphas[i]) and (C > alphas[i]): b = b1
 70                 elif (0 < alphas[j]) and (C > alphas[j]): b = b2
 71                 else: b = (b1 + b2)/2.0
 72                 alphaPairsChanged += 1
 73                 print("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
 74         if (alphaPairsChanged == 0): iter += 1
 75         else: iter = 0
 76         print ("iteration number: %d" % iter)
 77     return b,alphas
 78
 79 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
 80     m,n = shape(X)
 81     K = mat(zeros((m,1)))
 82     if kTup[0]==‘lin‘: K = X * A.T   #linear kernel
 83     elif kTup[0]==‘rbf‘:
 84         for j in range(m):
 85             deltaRow = X[j,:] - A
 86             K[j] = deltaRow*deltaRow.T
 87         K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
 88     else: raise NameError(‘Houston We Have a Problem --  89     That Kernel is not recognized‘)
 90     return K
 91
 92 #完整版的SMO的支持函数
 93 class optStruct:
 94     def __init__(self, dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
 95         self.X = dataMatIn
 96         self.labelMat = classLabels
 97         self.C = C
 98         self.tol = toler
 99         self.m = shape(dataMatIn)[0]
100         self.alphas = mat(zeros((self.m, 1)))
101         self.b = 0
102         self.eCache = mat(zeros((self.m, 2)))  # first column is valid flag
103         self.K = mat(zeros((self.m, self.m)))
104         for i in range(self.m):
105             self.K[:, i] = kernelTrans(self.X, self.X[i, :], kTup)
106
107 #误差缓存
108 def calcEk(oS, k):
109     fXk = float(multiply(oS.alphas, oS.labelMat).T * oS.K[:, k] + oS.b)
110     Ek = fXk - float(oS.labelMat[k])
111     return Ek
112
113 #内循环中的启发式方法
114 def selectJ(i, oS, Ei):  # this is the second choice -heurstic, and calcs Ej
115     maxK = -1;
116     maxDeltaE = 0;
117     Ej = 0
118     oS.eCache[i] = [1, Ei]  # set valid #choose the alpha that gives the maximum delta E
119     validEcacheList = nonzero(oS.eCache[:, 0].A)[0]
120     if (len(validEcacheList)) > 1:
121         for k in validEcacheList:  # loop through valid Ecache values and find the one that maximizes delta E
122             if k == i: continue  # don‘t calc for i, waste of time
123             Ek = calcEk(oS, k)
124             deltaE = abs(Ei - Ek)
125             #选择具有最大步长的j
126             if (deltaE > maxDeltaE):
127                 maxK = k;
128                 maxDeltaE = deltaE;
129                 Ej = Ek
130         return maxK, Ej
131     else:  # in this case (first time around) we don‘t have any valid eCache values
132         j = selectJrand(i, oS.m)
133         Ej = calcEk(oS, j)
134     return j, Ej
135
136
137 def updateEk(oS, k):  # after any alpha has changed update the new value in the cache
138     Ek = calcEk(oS, k)
139     oS.eCache[k] = [1, Ek]
140
141 def innerL(i, oS):
142     Ei = calcEk(oS, i)
143     if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
144         j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
145         alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
146         if (oS.labelMat[i] != oS.labelMat[j]):
147             L = max(0, oS.alphas[j] - oS.alphas[i])
148             H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
149         else:
150             L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
151             H = min(oS.C, oS.alphas[j] + oS.alphas[i])
152         if L==H: print("L==H"); return 0
153         eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
154         if eta >= 0: print ("eta>=0"); return 0
155         oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
156         oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
157         updateEk(oS, j) #added this for the Ecache
158         if (abs(oS.alphas[j] - alphaJold) < 0.00001): print("j not moving enough"); return 0
159         oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
160         updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
161         b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
162         b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
163         if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
164         elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
165         else: oS.b = (b1 + b2)/2.0
166         return 1
167     else: return 0
168
169 def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=(‘lin‘, 0)):    #full Platt SMO
170     oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
171     iter = 0
172     entireSet = True; alphaPairsChanged = 0
173     while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
174         alphaPairsChanged = 0
175         if entireSet:   #go over all
176             for i in range(oS.m):
177                 alphaPairsChanged += innerL(i,oS)
178                 print("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
179             iter += 1
180         else:#go over non-bound (railed) alphas
181             nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
182             for i in nonBoundIs:
183                 alphaPairsChanged += innerL(i,oS)
184                 print("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
185             iter += 1
186         if entireSet: entireSet = False #toggle entire set loop
187         elif (alphaPairsChanged == 0): entireSet = True
188         print("iteration number: %d" % iter)
189     return oS.b,oS.alphas
190
191 def calcWs(alphas,dataArr,classLabels):
192     X = mat(dataArr); labelMat = mat(classLabels).transpose()
193     m,n = shape(X)
194     w = zeros((n,1))
195     for i in range(m):
196         w += multiply(alphas[i]*labelMat[i],X[i,:].T)
197     return w
198
199
200
201 dataArr,labelArr=loadDataSet(‘testSet.txt‘)
202 b,alphas=smoP(dataArr,labelArr,0.6,0.001,40)
203 ws=calcWs(alphas,dataArr,labelArr)
204 print(ws)

原文地址:https://www.cnblogs.com/zhibei/p/9353878.html

时间: 2024-10-10 12:44:16

SVM python小样例的相关文章

线性回归 python小样例

线性回归优点:结果易于理解,计算上不复杂缺点:对非线性的数据拟合不好适用数据类型:数值型和标称型数据horse=0.0015*annualSalary-0.99*hoursListeningToPulicRadio这就是所谓的回归方程,其中的0.0015和-0.99称作回归系数,求这些回归系数的过程就是回归.一旦有了这些回归系数,再给定输入,做预测就非常容易了具体的做法就是用回归系数乘以输入值,再将结果全部加在一起,就得到了预测值回归的一般方法(1)收集数据:采用任意方法收集数据(2)准备数据:

SpringMVC+Spring+Hibernate的小样例

Strusts2+Spring+Hibernate尽管是主流的WEB开发框架,可是SpringMVC有越来越多的人使用了.确实也很好用.用得爽! 这里实现了一个SpringMVC+Spring+Hibernate的小样例.凝视都在代码里面. 项目各包的结构例如以下图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvcWlhbnR1amF2YQ==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve

C Tips:显示点阵汉字的小样例

非常简陋的一段小程序,演示怎样显示点阵字库.有时间的时候再详解. #include <stdio.h> #include <stdlib.h> struct HzkInfoStruct { int HzkSelect; int HzkSquare; char * fileName; FILE * file; int martixBytesCount; unsigned char *pMatrix; }; typedef struct HzkInfoStruct HzkInfo; v

【转】以Python为例的Async / Await的编程基础

转, 原文:https://www.cnblogs.com/middleware/p/11996731.html ----------------------------------- 来源:Redislabs 作者:Loris Cro 翻译:Kevin (公众号:中间件小哥) 近年来,许多编程语言都在努力改进它们的并发原语.Go 语言有 goroutines,Ruby 有 fibers,当然,还有 Node.js 帮助普及的 async/await,这是当今使用最为广泛的并发操作类型.在本文中

决策树python实现小样例

我们经常使用决策树处理分类问题,近年来的调查表明决策树也是经常使用的数据挖掘算法K-NN可以完成多分类任务,但是它最大的缺点是无法给出数据的内在含义,决策树的主要优势在于数据形式非常容易理解决策树的优缺点:优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据缺点:可能会产生过度匹配问题适用数据类型:数值型和标称型在构造决策树时,我们需要解决的第一个问题是,当前数据集上哪个特征在划分数据分类时起决定性作用.为了找到决定性的特征,划分出最好的结果,我们必须评估每个特征

svm+python实现

一.svm概述 svm是一种二分类模型,学习策略是通过间隔最大化来实现分类的目的,最终转化为了凸二次规划求解,即: 的确我们可以单纯的通过求解凸二次规划问题来获得答案,但是当训练样本量很大时,这些算法就会变的低效,从上面的公式就可以直观看出,有多少样例就有多少乘子,如何高效求解拉格朗日乘子成为了关键--smo. 浏览了很多博文总结一下具体的求解过程(smo): 1.寻找违背KKT条件的,即: 其中: 2.寻找第二个乘子,通过:max|E1-E2| 3.求解约束前的,公式为: 其中,,Ei=f(x

Relation Extraction中SVM分类样例unbalance data问题解决 -松弛变量与惩罚因子

转载自:http://blog.csdn.net/yangliuy/article/details/8152390 1.问题描述 做关系抽取就是要从产品评论中抽取出描述产品特征项的target短语以及修饰该target的opinion短语,在opinion mining里面属于很重要的task,很多DM.NLP相关的paper在做这方面的工作.基本的思路是: (1)从sentence的parse tree(比如stanford parser)中选取候选target结点和候选opinion结点,然

Python单例的一种简单写法

最原始的想法就是每个类都重写new方法. class Dog: dog = None def __new__(cls, *args, **kwargs): if cls.dog is None: cls.dog = object.__new__(cls) print('create singleton over') return cls.dog def __init__(self, name): print('init is called') self.name = name # 下面这句话会报

Python——单例设计模式

单例设计模式: 让类创建的对象,在系统中只有唯一的实例, 使用python类内置的__new__()方法实现,__new__()方法在创建对象时会被自动调用,通过重写__new__()方法,使得无论用类型创建多少个对象,内存中都只创建一个对象的实例,此时__new__()方法必须返回此内置函数的调用,及return super().__new__(cls) class MyClass(): # 类属性,记录第一个被创建对象的引用 instance = None def __new__(cls,