『TensorFlow』分布式训练_其二_多GPU并行demo分析(待续)

建议比对『MXNet』第七弹_多GPU并行程序设计

models/tutorials/image/cifar10/cifer10_multi_gpu-train.py

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A binary to train CIFAR-10 using multiple GPUs with synchronous updates.
Accuracy:
cifar10_multi_gpu_train.py achieves ~86% accuracy after 100K steps (256
epochs of data) as judged by cifar10_eval.py.
Speed: With batch_size 128.
System        | Step Time (sec/batch)  |     Accuracy
--------------------------------------------------------------------
1 Tesla K20m  | 0.35-0.60              | ~86% at 60K steps  (5 hours)
1 Tesla K40m  | 0.25-0.35              | ~86% at 100K steps (4 hours)
2 Tesla K20m  | 0.13-0.20              | ~84% at 30K steps  (2.5 hours)
3 Tesla K20m  | 0.13-0.18              | ~84% at 30K steps
4 Tesla K20m  | ~0.10                  | ~84% at 30K steps
Usage:
Please see the tutorial and website for how to download the CIFAR-10
data set, compile the program and train the model.
http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import os.path
import re
import time

import numpy as np
from six.moves import xrange  # pylint: disable=redefined-builtin
import tensorflow as tf
import cifar10

FLAGS = tf.app.flags.FLAGS

tf.app.flags.DEFINE_string(‘train_dir‘, ‘/tmp/cifar10_train‘,
                           """Directory where to write event logs """
                           """and checkpoint.""")
tf.app.flags.DEFINE_integer(‘max_steps‘, 1000000,
                            """Number of batches to run.""")
tf.app.flags.DEFINE_integer(‘num_gpus‘, 1,
                            """How many GPUs to use.""")
tf.app.flags.DEFINE_boolean(‘log_device_placement‘, False,
                            """Whether to log device placement.""")

def tower_loss(scope, images, labels):
  """Calculate the total loss on a single tower running the CIFAR model.
  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. ‘tower_0‘
    images: Images. 4D tensor of shape [batch_size, height, width, 3].
    labels: Labels. 1D tensor of shape [batch_size].
  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection(‘losses‘, scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name=‘total_loss‘)

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove ‘tower_[0-9]/‘ from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub(‘%s_[0-9]*/‘ % cifar10.TOWER_NAME, ‘‘, l.op.name)
    tf.summary.scalar(loss_name, l)

  return total_loss

def average_gradients(tower_grads):
  """Calculate the average gradient for each shared variable across all towers.
  Note that this function provides a synchronization point across all towers.
  Args:
    tower_grads: List of lists of (gradient, variable) tuples. The outer list
      is over individual gradients. The inner list is over the gradient
      calculation for each tower.
  Returns:
     List of pairs of (gradient, variable) where the gradient has been averaged
     across all towers.
  """
  average_grads = []
  for grad_and_vars in zip(*tower_grads):
    # Note that each grad_and_vars looks like the following:
    #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
    grads = []
    for g, _ in grad_and_vars:
      # Add 0 dimension to the gradients to represent the tower.
      expanded_g = tf.expand_dims(g, 0)

      # Append on a ‘tower‘ dimension which we will average over below.
      grads.append(expanded_g)

    # Average over the ‘tower‘ dimension.
    grad = tf.concat(axis=0, values=grads)
    grad = tf.reduce_mean(grad, 0)

    # Keep in mind that the Variables are redundant because they are shared
    # across towers. So .. we will just return the first tower‘s pointer to
    # the Variable.
    v = grad_and_vars[0][1]
    grad_and_var = (grad, v)
    average_grads.append(grad_and_var)
  return average_grads

def train():
  """Train CIFAR-10 for a number of steps."""
  with tf.Graph().as_default(), tf.device(‘/cpu:0‘):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        ‘global_step‘, [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    cifar10.LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.GradientDescentOptimizer(lr)

    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()
    batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * FLAGS.num_gpus)
    # Calculate the gradients for each model tower.
    tower_grads = []
    with tf.variable_scope(tf.get_variable_scope()):
      for i in xrange(FLAGS.num_gpus):
        with tf.device(‘/gpu:%d‘ % i):
          with tf.name_scope(‘%s_%d‘ % (cifar10.TOWER_NAME, i)) as scope:
            # Dequeues one batch for the GPU
            image_batch, label_batch = batch_queue.dequeue()
            # Calculate the loss for one tower of the CIFAR model. This function
            # constructs the entire CIFAR model but shares the variables across
            # all towers.
            loss = tower_loss(scope, image_batch, label_batch)

            # Reuse variables for the next tower.
            tf.get_variable_scope().reuse_variables()

            # Retain the summaries from the final tower.
            summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

            # Calculate the gradients for the batch of data on this CIFAR tower.
            grads = opt.compute_gradients(loss)

            # Keep track of the gradients across all towers.
            tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = average_gradients(tower_grads)

    # Add a summary to track the learning rate.
    summaries.append(tf.summary.scalar(‘learning_rate‘, lr))

    # Add histograms for gradients.
    for grad, var in grads:
      if grad is not None:
        summaries.append(tf.summary.histogram(var.op.name + ‘/gradients‘, grad))

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
      summaries.append(tf.summary.histogram(var.op.name, var))

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    # Group all updates to into a single train op.
    train_op = tf.group(apply_gradient_op, variables_averages_op)

    # Create a saver.
    saver = tf.train.Saver(tf.global_variables())

    # Build the summary operation from the last tower summaries.
    summary_op = tf.summary.merge(summaries)

    # Build an initialization operation to run below.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), ‘Model diverged with loss = NaN‘

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = duration / FLAGS.num_gpus

        format_str = (‘%s: step %d, loss = %.2f (%.1f examples/sec; %.3f ‘
                      ‘sec/batch)‘)
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, ‘model.ckpt‘)
        saver.save(sess, checkpoint_path, global_step=step)

def main(argv=None):  # pylint: disable=unused-argument
  cifar10.maybe_download_and_extract()
  if tf.gfile.Exists(FLAGS.train_dir):
    tf.gfile.DeleteRecursively(FLAGS.train_dir)
  tf.gfile.MakeDirs(FLAGS.train_dir)
  train()

if __name__ == ‘__main__‘:
  tf.app.run()

  

原文地址:https://www.cnblogs.com/hellcat/p/9194110.html

时间: 2024-10-07 14:25:36

『TensorFlow』分布式训练_其二_多GPU并行demo分析(待续)的相关文章

『TensorFlow』分布式训练_其三_多机demo分析(待续)

tensorflow/tools/dist_test/python/mnist_replica.py # Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the Licens

『TensorFlow』队列&多线程&TFRecod文件_我辈当高歌

TF数据读取队列机制详解 TFR文件多线程队列读写操作: TFRecod文件写入操作: import tensorflow as tf def _int64_feature(value): # value必须是可迭代对象 # 非int的数据使用bytes取代int64即可 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) num_shards = 2 instance_perPshard = 2 for i

『TensorFlow』函数查询列表_神经网络相关

神经网络(Neural Network) 激活函数(Activation Functions) 操作 描述 tf.nn.relu(features, name=None) 整流函数:max(features, 0) tf.nn.relu6(features, name=None) 以6为阈值的整流函数:min(max(features, 0), 6) tf.nn.elu(features, name=None) elu函数,exp(features) - 1 if < 0,否则featuresE

『TensorFlow』迁移学习_他山之石,可以攻玉

目的: 使用google已经训练好的模型,将最后的全连接层修改为我们自己的全连接层,将原有的1000分类分类器修改为我们自己的5分类分类器,利用原有模型的特征提取能力实现我们自己数据对应模型的快速训练.实际中对于一个陌生的数据集,原有模型经过不高的迭代次数即可获得很好的准确率. 实战: 实机文件夹如下,两个压缩文件可以忽略: 花朵图片数据下载: 1 curl -O http://download.tensorflow.org/example_images/flower_photos.tgz 已经

『TensorFlow』读书笔记_降噪自编码器

『TensorFlow』降噪自编码器设计 之前学习过的代码,又敲了一遍,新的收获也还是有的,因为这次注释写的比较详尽,所以再次记录一下,具体的相关知识查阅之前写的文章即可(见上面链接). # Author : Hellcat # Time : 2017/12/6 import numpy as np import sklearn.preprocessing as prep import tensorflow as tf from tensorflow.examples.tutorials.mni

『TensorFlow』以GAN为例的神经网络类范式

1.导入包: import os import time import math from glob import glob from PIL import Image import tensorflow as tf import numpy as np import ops # 层函数封装包 import utils # 其他辅助函数 2.简单的临时辅助函数: def conv_out_size_same(size, stride): # 对浮点数向上取整(大于f的最小整数) return i

『TensorFlow』slim高级模块

『TensorFlow』徒手装高达_主机体框架开光版_Google自家AlexNet集成&slim高级模块学习 辅助函数 slim.arg_scope() slim.arg_scope可以定义一些函数的默认参数值,在scope内,我们重复用到这些函数时可以不用把所有参数都写一遍,注意它没有tf.variable_scope()划分图结构的功能, with slim.arg_scope([slim.conv2d, slim.fully_connected], trainable=True, act

『TensorFlow』TFR数据预处理探究以及框架搭建

TFRecord文件书写效率对比(单线程和多线程对比) 准备工作, # Author : Hellcat # Time : 18-1-15 ''' import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" ''' import os import glob import numpy as np import tensorflow as tf import matplotlib.pyplot as plt np.set_pri

『TensorFlow』常用函数实践笔记

查询列表: 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』函数查询列表_神经网络相关 经验之谈: 节点张量铺设好了之后,只要不加sess.run(),可以运行脚本检查张量节点是否匹配,无需传入实际数据流. 'conv1'指节点,'conv1:0'指节点输出的第一个张量. sess上下文环境中的函数调用即使不传入sess句柄,函数体内也存在于默认的sess环境中,可以直接sess.run(). image_holder