深度学习硬件:CPU、GPU、FPGA、ASIC

人工智能包括三个要素:算法,计算和数据。人工智能算法目前最主流的是深度学习。计算所对应的硬件平台有:CPU、GPU、FPGA、ASIC。由于移动互联网的到来,用户每天产生大量的数据被入口应用收集:搜索、通讯。我们的QQ、微信业务,用户每天产生的图片数量都是数亿级别,如果我们把这些用户产生的数据看成矿藏的话,计算所对应的硬件平台看成挖掘机,挖掘机的挖掘效率就是各个计算硬件平台对比的标准。

最初深度学习算法的主要计算平台是 CPU,因为 CPU 通用性好,硬件框架已经很成熟,对于程序员来说非常友好。然而,当深度学习算法对运算能力需求越来越大时,人们发现 CPU 执行深度学习的效率并不高。CPU 为了满足通用性,芯片面积有很大一部分都用于复杂的控制流和Cache缓存,留给运算单元的面积并不多。这时候,GPU 进入了深度学习研究者的视野。GPU原本的目的是图像渲染,图像渲染算法又因为像素与像素之间相对独立,GPU提供大量并行运算单元,可以同时对很多像素进行并行处理,而这个架构正好能用在深度学习算法上。

GPU 运行深度学习算法比 CPU 快很多,但是由于高昂的价格以及超大的功耗对于给其在IDC大规模部署带来了诸多问题。有人就要问,如果做一个完全为深度学习设计的专用芯片(ASIC),会不会比 GPU 更有效率?事实上,要真的做一块深度学习专用芯片面临极大不确定性,首先为了性能必须使用最好的半导体制造工艺,而现在用最新的工艺制造芯片一次性成本就要几百万美元。去除资金问题,组织研发队伍从头开始设计,完整的设计周期时间往往要到一年以上,但当前深度学习算法又在不断的更新,设计的专用芯片架构是否适合最新的深度学习算法,风险很大。可能有人会问Google不是做了深度学习设计的专用芯片TPU?从Google目前公布的性能功耗比提升量级(十倍以上的提升)上看,还远未达到专用处理器的提升上限,因此很可能本质上采用是数据位宽更低的类GPU架构,可能还是具有较强的通用性。这几年,FPGA 就吸引了大家的注意力,亚马逊、facebook等互联网公司在数据中心批量部署了FPGA来对自身的深度学习以云服务提供硬件平台。

FPGA 全称「可编辑门阵列」(Field Programmable Gate Array),其基本原理是在 FPGA 芯片内集成大量的数字电路基本门电路以及存储器,而用户可以通过烧写 FPGA 配置文件来来定义这些门电路以及存储器之间的连线。这种烧入不是一次性的,即用户今天可以把 FPGA 配置成一个图像编解码器,明天可以编辑配置文件把同一个 FPGA 配置成一个音频编解码器,这个特性可以极大地提高数据中心弹性服务能力。所以说在 FPGA 可以快速实现为深度学习算法开发的芯片架构,而且成本比设计的专用芯片(ASIC)要便宜,当然性能也没有专用芯片(ASIC)强。ASIC是一锤子买卖,设计出来要是发现哪里不对基本就没机会改了,但是 FPGA 可以通过重新配置来不停地试错知道获得最佳方案,所以用 FPGA 开发的风险也远远小于 ASIC。

参考链接:https://www.csdn.net/article/a/2017-01-23/15843536

原文地址:https://www.cnblogs.com/guo-xiang/p/9337599.html

时间: 2024-10-06 06:51:20

深度学习硬件:CPU、GPU、FPGA、ASIC的相关文章

[AI开发]深度学习如何选择GPU?

机器推理在深度学习的影响下,准确性越来越高.速度越来越快.深度学习对人工智能行业发展的贡献巨大,这得益于现阶段硬件计算能力的提升.互联网海量训练数据的出现.本篇文章主要介绍深度学习过程中如何选择合适的GPU显卡,如果你是深度学习新手,希望这篇文章对你有帮助. 推理用到的硬件分两种,一种是专业AI硬件公司出的AI芯片,一种就是我们平时熟知的GPU显卡了,前者不太适合入门学习,而后者无论从入门难度还是性价比上讲,对于新手来说都是优先的选择.而GPU显卡主流厂商大概两家,一个Nvidia,一个AMD,

深入浅出计算机组成原理:GPU(下)-为什么深度学习需要使用GPU?(第31讲)

一.引子 上一讲,我带你一起看了三维图形在计算机里的渲染过程.这个渲染过程,分成了顶点处理.图元处理.栅格化.片段处理,以及最后的像素操作.这一连串的过程, 也被称之为图形流水线或者渲染管线. 因为要实时计算渲染的像素特别地多,图形加速卡登上了历史的舞台.通过3dFx的Voodoo或者NVidia的TNT这样的图形加速卡,CPU就不需要再去处理一个个像素点的图元处理.栅格化和片段处理这些操作.而3D游戏也是从这个时代发展起来的. 你可以看这张图,这是“古墓丽影”游戏的多边形建模的变化.这个变化,

windows10配置tensorflow深度学习环境(GPU版)各种坑

我们配置一个tensorflow-gpu版的深度学习环境 windows10 64 python3.5 vs2017(需要C++部分) cuda9.0 cudnn7.1 GeForce GTX1060 1.安装python 我们选择python3.5,直接从官网下载windows10版本的安装就行,可以选择默认安装路径,并添加环境变量. 测试打卡cmd,输入python,输出python的版本信息 则安装成功 2.安装vs2017 3.安装cuda 首先要确保你的电脑上装了一块差不多的显卡 我们

深度学习FPGA实现基础知识0(FPGA击败GPU和GPP,成为深度学习的未来?)

需求说明:深度学习FPGA实现知识储备 来自:http://power.21ic.com/digi/technical/201603/46230.html FPGA击败GPU和GPP,成为深度学习的未来? 最近几年,深度学习成为计算机视觉.语音识别.自然语言处理等关键领域中所最常使用的技术,被业界大为关注.然而,深度学习模型需要极为大量的数据和计算能力,只有更好的硬件加速条件,才能满足现有数据和模型规模继续扩大的需求.现有的解决方案使用图形处理单元(GPU)集群作为通用计算图形处理单元(GPGP

深度学习“引擎”之争:GPU加速还是专属神经网络芯片?

深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景

玩深度学习选哪块英伟达 GPU?有性价比排名还不够!

本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与"传统" AI 算法相比,深度学习(DL)的计算性能要求,可以说完全在另一个量级上. 而 GPU 的选择,会在根本上决定你的深度学习体验.那么,对于一名 DL 开发者,应该怎么选择合适的 GPU 呢?这篇文章将深入讨论这个问题,聊聊有无必要入手英特尔协处理器 Xeon Phi,并将各主流显卡的性能.性价比制成一目了然的对比图,供大家参考. 先来谈谈选择

机器学习和深度学习资料合集

机器学习和深度学习资料合集 注:机器学习资料篇目一共500条,篇目二开始更新 希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.此外:某些资料在中国访问需要梯子. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in

[转]机器学习和深度学习资料汇总【01】

本文转自:http://blog.csdn.net/sinat_34707539/article/details/52105681 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen

机器学习与深度学习资料

<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80