python并发编程:阻塞IO

阻塞IO(blocking  IO)

在Linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

  当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的udp包),这个时候kernel就要等待足够的数据到来

而在用户进程这边,整个进程会被阻塞,当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存
然后kernel返回结果,用户进程才解除block的状态,重新运行起来

  所以,blocking IO的特点就是在IO执行的两个阶段(等待数据和拷贝数据两个阶段)都被block了

几乎所有的程序员第一次接触到的网络编程都是从listen(),send(),recv()等接口开

始的,使用这些接口可以很方便的构建服务器/客户机的模型。然而大部分的socket接口都是

阻塞型的。如下图

ps:
所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞

只有当该系统调用获得结果或者超时出错时才返回。

  

实际上,除非特别指定,几乎所有的IO接口(包括socket接口)都是阻塞型的。这给网络编程带来了一个很大的问题。如在调用recv(1024)的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。

一个简单的解决方案:

在服务端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。

  该方案的问题是:

开启多进程或多线程的方式,在遇到同时响应成百上千的连接请求,则无论多线程还是多进程都会严重占据系统资源,降低系统对外界响应效率,而且线程与进程本身也更容易进入假死状态

  改进方案:

很多程序员可能会考虑使用“线程池”或“连接池”。“线程池”旨在减少创建和销毁线程的频率,其维持一定合理数量的线程,并让空闲的线程重新承担新的执行任务。“连接池”维持连接的缓存池,尽量重用已有的连接,减少创建和关闭连接的频率。这两种技术都可以很好的降低系统开销,都被广泛应用很多
大型系统,如websphere、tomcat和各种数据库等

  改进后方案其实也存在着问题:

“线程池”和“连接池”技术也只是在一定程度上缓解了频繁调用IO接口带来的资源占用。而且“池”始终尤其上限,当请求大大超过上限时,“池”构成的系统对外界的响应并不比没有池
的时候效果好多少。
所以使用“池”必须考虑其面临的响应规模,并根据规模调整“池”的大小

  对应上例中的所面临的可能同时出现的上千甚至上万次的客户端请求,“线程池”或“连接池”或许可以缓解部分压力,但是不能解决所有问题。总之,多线程模型可以方便高效的解决小规模的服务请求,但面对大规模的服务请求,多线程模型也会遇到瓶颈,可以用非阻塞接口来尝试解决这个问题。

练习:

服务端:

from socket import *
from threading import Thread

def communicate(conn):
    while True:
        try:
            data = conn.recv(1024)
            if not data:
                break
            conn.send(data.upper())
        except ConnectionResetError:
            break
    conn.close()

server = socket(AF_INET, SOCK_STREAM)
server.bind((‘127.0.0.1‘, 8080))
server.listen(5)

while True:
    print(‘starting...‘)
    conn,addr = server.accept()
    print(addr)

    t = Thread(target=communicate, args=(conn,))
    t.start()

server.close()

  客户端:

from socket import *

client = socket(AF_INET, SOCK_STREAM)
client.connect((‘127.0.0.1‘, 8080))

while True:
    msg = input("请输入数据:").strip()
    if not msg:
        continue
    client.send(msg.encode(‘utf-8‘))
    data = client.recv(1024)
    print(data.decode(‘utf-8‘))

client.close()

  

  

原文地址:https://www.cnblogs.com/mike-liu/p/9302186.html

时间: 2024-10-08 12:08:49

python并发编程:阻塞IO的相关文章

进程,操作系统,Python并发编程之多进程

1.进程基础知识 1.程序:若干文件 2.进程:一个正在执行的文件,程序 3.进程被谁执行:cpu最终运行指定的程序 4.操作系统调度作用:将磁盘上的程序加载到内存,然后交由CPU去处理,一个CPU正在运行的一个程序,就叫开启了一个进程 2.操作系统 1.操作系统:存在于硬盘与软件之间,管理.协调.控制软件与硬件的交互 2.操作系统的作用:将一些复杂的硬件封装成简单的借口,便于使用;合理地调度分配多个进程与cpu的关系,让其有序化 3.操作系统发展史 ①第一代电子计算机(1940-1955) 二

Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池

目录 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 2.死锁现象与递归锁 2.1死锁现象 2.2递归锁 3.信号量 4.GIL全局解释器锁 4.1背景 4.2为什么加锁 5.GIL与Lock锁的区别 6.验证计算密集型IO密集型的效率 6.1 IO密集型 6.2 计算密集型 7.多线程实现socket通信 7.1服务端 7.2客户端 8.进程池,线程池 Python并发编程05/ 死锁/递归锁/信号量/GIL锁/进程池/线程池 1.昨日回顾 #生产者消

python并发编程之多进程

python并发编程之多进程 一.什么是进程 进程:正在进行的一个过程或者一个任务,执行任务的是CPU. 原理:单核加多道技术 二.进程与程序的区别 进程是指程序的运行过程 需要强调的是:同一个程序执行两次是两个进程,比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,另一个可以播放武藤兰. 三.并发与并行 无论是并行还是并发,在用户看来都是'同时'运行的,不管是进程还是线程,都只是一个任务而已,真是干活的是cpu,cpu来做这些任务,而一个cpu同一时刻只能执行一个任务. (1)并发

python-学习-python并发编程之多进程与多线程

一 multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.Python提供了multiprocessing.    multiprocessing模块用来开启子进程,并在子进程中执行我们定制的任务(比如函数),该模块与多线程模块threading的编程接口类似.  multiprocessing模块的功能众多:支持子进程.通信和共享数据.执行不同形式的同步,

并发编程—— 阻塞队列和生产者-消费者模式

Java并发编程实践 目录 并发编程—— ConcurrentHashMap 并发编程—— 阻塞队列和生产者-消费者模式 概述 第1部分 为什么要使用生产者和消费者模式 第2部分 什么是生产者消费者模式 第3部分 代码示例 第1部分 为什么要使用生产者和消费者模式 在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程.在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据.同样的道理,如果消费者的处理能力大于生产者,那么消费

python并发编程&多线程(一)

本篇理论居多,实际操作见:  python并发编程&多线程(二) 一 什么是线程 在传统操作系统中,每个进程有一个地址空间,而且默认就有一个控制线程 线程顾名思义,就是一条流水线工作的过程,一条流水线必须属于一个车间,一个车间的工作过程是一个进程 车间负责把资源整合到一起,是一个资源单位,而一个车间内至少有一个流水线 流水线的工作需要电源,电源就相当于cpu 所以,进程只是用来把资源集中到一起(进程只是一个资源单位,或者说资源集合),而线程才是cpu上的执行单位. 多线程(即多个控制线程)的概念

python并发编程&多线程(二)

前导理论知识见:python并发编程&多线程(一) 一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性 官网链接:https://docs.python.org/3/library/threading.html?highlight=threading#(装B模式加载中…………) 二 开启线程的两种方式  方式一  方式二 三 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别  1 谁的开启速度快  2 瞅

Python并发编程系列之多线程

1引言 2 创建线程 2.1 函数的方式创建线程 2.2 类的方式创建线程 3 Thread类的常用属性和方法 3.1 守护线程:Deamon 3.2 join()方法 4 线程间的同步机制 4.1 互斥锁:Lock 4.2 递归锁:RLock 4.3 Condition 4.4 信号量:Semaphore 4.5 事件:Event 4.6 定时器:Timer 5 线程间的通行 5.1队列:Queue 6 线程池 7 总结 1 引言 上一篇博文详细总结了Python进程的用法,这一篇博文来所以说

python并发编程02/多进程

目录 python并发编程02/多进程 1.进程创建的两种方式 1.1开启进程的第一种方式 1.2开启进程的第二种方式 1.3简单应用 2.进程pid 2.1命令行获取所有的进程的pid tasklist 2.2代码级别如何获取一个进程的pid 2.3获取父进程(主进程)的pid 3.验证进程之间的空间隔离 4.进程对象join方法 5.进程对象其他属性 6.守护进程 python并发编程02/多进程 1.进程创建的两种方式 1.1开启进程的第一种方式 from multiProcessing

Python并发编程03/僵尸孤儿进程,互斥锁,进程之间的通信

目录 Python并发编程03/僵尸孤儿进程,互斥锁,进程之间的通信 1.昨日回顾 2.僵尸进程和孤儿进程 2.1僵尸进程 2.2孤儿进程 2.3僵尸进程如何解决? 3.互斥锁,锁 3.1互斥锁的应用 3.2Lock与join的区别 4.进程之间的通信 进程在内存级别是隔离的 4.1基于文件通信 (抢票系统) 4.2基于队列通信 Python并发编程03/僵尸孤儿进程,互斥锁,进程之间的通信 1.昨日回顾 1.创建进程的两种方式: 函数, 类. 2.pid: os.getpid() os.get