数据仓库搭建——Inmon与Kimball

一、简介

1.1 历史

搞数据仓库这么久,实践中发现首先搭建数据集市,还是清洗数据之后,直接进入数据立方体(形成维度表和实施表)形成核心数据仓库层,是个选择题...

随后发现这其实涉及到了数据仓库的历史问题,是采用Inmon建模还是采用Kimball建模?甚至有人称之为数据仓库界的宗教之争。下面我说一下自己的理解:

1.2 Inmon

2000年5月,W.H.Inmon在DM Review杂志上发表一篇文章,正是揭示了他的企业信息化工厂的特点。下图是我理解的企业信息化工厂架构图:

上面是一个旅游B2C数据仓库的案例,左边是业务原数据。这些数据经过ETL加工,注入到企业数据仓库中。

1.3 Kimball

我理解,Kimball与Inmon的主要区别就是数据集市前置,这样在数据仓库迭代开发过程中更接近需求,也会提升敏捷性。通常,Kimball都是以最终任务为导向。

首先,在得到数据后需要先做数据的探索,深入理解业务逻辑与数据表的关系。

然后,在明确数据依赖后,按照目标需求,直接生成数据集市表。

最后,(数据集市层)拆分出事实表和维度表

结果,数据集市一方面可以直接向BI环节输出数据,另一方面也可以向数据仓库层输出数据,方便后续的多维分析。如下图:

二、特点

他们之间的区别用这个图表体现非常合适:

特性 Kimball Inmon
时间 快速交付 路漫漫其修远兮
开发难度
维护难度
技能要求 入门级 专家级
数据要求 特定业务 企业级

三、参考文献

https://segmentfault.com/a/1190000006255954

http://blog.csdn.net/paicMis/article/details/53236869

时间: 2024-10-16 20:15:17

数据仓库搭建——Inmon与Kimball的相关文章

数据仓库中的Inmon与Kimball架构

对于数据仓库体系结构的最佳问题,始终存在许多不同的看法,甚至有人把Inmon和Kimball之争称之为数据仓库界的"宗教战争",那么本文就通过对两位提倡的数据仓库体系和市场流行的另一种体系做简单描述和比较,不是为了下定义那个好,那个不好,而是让初学者更明白两位数据仓库鼻祖对数据仓库体系的见解而已. 首先,我们谈Inmon的企业信息化工厂. 2000年5月,W.H.Inmon在DM Review杂志上发表一篇文章,里面写到一句话"--如果明天非得设计一个数据集市,我将不考虑使用

基于MaxCompute打造轻盈的人人车移动端数据平台

以下内容根据演讲视频以及PPT整理而成. 一.人人车数据平台 快速搭建,一年时间完成6大平台的搭建 基于阿里云平台上成熟的技术,人人车企业只用了一年时间便实现了6大数据平台的设计与搭建,其中包括:Jarvis-BI报表平台.Metadata-元数据管理平台.Streaming-实时计算平台.Athena-数据工单平台.Cateye-监控平台与AD-HOC-自助取数平台. 上述数据平台的最底层均由阿里云的相关技术支撑运行,阿里云为平台的搭建提供了两种不同技术的支持,在储存计算技术方面,阿里云提供了

数据仓库之父——Bill Inmon(转载)

从此处转载 http://blog.sina.com.cn/s/blog_615f9dba0100f67p.html 比尔·恩门(Bill Inmon),被称为数据仓库之父,最早的数据仓库概念提出者,在数据库技术管理与数据库设计方面,拥有逾35年的经验.他是"企业信息工厂"的合作创始人与"政府信息工厂"的创始人. 比尔·恩门的思想与见识在所有重量级的计算机协会.许多产业会议.技术研讨会上,都博得了无比的敬重.他写过650多篇文章,大多发布在世界最知名的IT刊物里,D

大数据学校(二)hadoop概述及Google的三篇论文

学习大数据,学什么?怎么学? 1.原理和运行机制.体系结构(非常重要)2.动手:搭建环境.写程序 目的:1.学习内容 2.熟悉一些名词 一.各章概述(Hadoop部分) (一).Hadoop的起源与背景知识 1.什么是大数据?两个例子.大数据的核心问题是什么? 举例: (1)商品推荐:问题1:大量的订单如何存储? 问题2:大量的订单如何计算? (2)天气预报:问题1:大量的天气数据如何存储? 问题2:大量的天气数据如何计算? 大数据的核心问题: (1)数据的存储:分布式文件系统(分布式存储)(2

0基础学习大数据你需要了解的学习路线和方向

现在大数据这么火,各行各业想转行大数据,那么问题来了,该往哪方面发展,哪方面最适合自己? 首先从字面来了解一下大数据 大数据 (巨量数据集合(IT行业术语)) 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉.管理和处理的数据集合,是需要新处理模式才能具有更强的决策力.洞察发现力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的5V特点(IBM提出):Volume(大量).Velocity(高速).Variety(多样).Value(低价值密度).Veracit

阿里,腾讯内部十二个大数据项目,你都有做过吗?

随着社会的进步,大数据的高需求,高薪资,高待遇,促使很多人都来学习和转行到大数据这个行业.学习大数据是为了什么?成为一名大数据高级工程师.而大数据工程师能得到高薪.高待遇的能力在哪?自然是项目经验.下面给大家大概介绍一下在阿里的"双11"."双12"."双旦"即将到来的"618"与腾讯大数据都用上的十二个大数据项目:阿里,腾讯内部十二个大数据项目,你都有做过吗?一个大数据分析项目关键构成如下: 信息采集组.数据清洗组.数据融合

大数据入门学习路线分享,请大家收下

大数据的学习技术点Hadoop核心(1) 分布式存储基石:HDFSHDFS简介 入门演示 构成及工作原理解析:数据块,NameNode, DataNode.数据写入与读取过程.数据复制.HA方案.文件类型. HDFS常用设置 Java API代码演示(2) 分布式计算基础:MapReduceMapReduce简介.编程模型.Java API 介绍.编程案例介绍.MapReduce调优(3) Hadoop集群资源管家:YARNYARN基本架构 资源调度过程 调度算法 YARN上的计算框架离线计算(

2018大数据学习路线从入门到精通

最近很多人问小编现在学习大数据这么多,他们都是如何学习的呢.很多初学者在萌生向大数据方向发展的想法之后,不免产生一些疑问,应该怎样入门?应该学习哪些技术?学习路线又是什么?今天小编特意为大家整理了一份大数据从入门到精通的学习路线.并且附带学习资料和视频.希望能够帮助到大家.大数据学习资料分享群:119599574 第一阶段:Linux理论 (1)Linux基础:(2)Linux-shell编程:(3)高并发:lvs负载均衡:(4)高可用&反向代理 第二阶段:Hadoop理论 (1)hadoop-

阿里年薪50万的JAVA工程师转大数据学习路线

大数据有两个方向,一个是偏计算机的,另一个是偏经济的.你学过Java,所以你可以偏将计算机的. Java程序员想转大数据可行吗?Java是全世界使用人数最多的编程语言.不少程序员选择Java做为了自己的编程第一语言,但随之而来的是Java程序员接近饱和的人才市场.由此,随着大数据时代的到来,有很多Java程序员想要转行大数据. 不得不说,大数据行业可以说是为Java程序员量身打造的一个朝阳行业?为什么要这么说呢? 互联网是当下流行趋势,且未来可期.大数据的发展亦是时代发展的必然,如果大家还想要了