最新学习了最优化相关的一些知识,为便于记忆,整理成最优化相关的http://系列,初学者,难免很多地方的理解有偏差,望指正 1. 最优化第一讲——概念 2. 一维搜索算法 最优化第二讲—一维搜索算法(二分法、等区间法) 最优化第二讲——一维搜索法(斐波那契法和java实现) 最优化第二讲——一维搜索法(黄金分割法和java实现) 最优化第二讲——一维搜索法(牛顿法) 3. 无约束的梯度技术 最优化第三讲——无约束的梯度技术 最优化算法学习 时间: 2024-10-09 06:35:07
生活中我们经常听到人们说"不要把鸡蛋放到一个篮子里",这样可以降低风险.深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle).本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导. 相关链接 最大熵学习笔记(零)目录和引言 最大熵学习笔记(一)预备知识 最大熵学习笔记(二)最大熵原理 最大熵学习笔记(三)最大熵模型 最大熵学习笔记(四)模型求解 最大熵学习笔
分治思想: 分治算法的思想就是 对于某些特定种类的问题 如果问题的规模很小,那么就直接解决,如果问题的规模比较大,那么就把问题先分解为规模小的但是问题相同的子问题 ,并且不断分解直到规模足够小,再递归地解决这些问题 如果原问题可分割成k个子问题,1<k≤n,且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的. 递归与分治经常是一起使用的 能够用分治的情况 : 1.问题复杂性随规模减小而减小 2.问题具有最优子结构性质 最优子结构:如果问题的最优解所包
之前做特征选择,实现过基于群智能算法进行最优化的搜索,看过一些群智能优化算法的论文,在此做一下总结. 在生活或者工作中存在各种各样的最优化问题,比如每个企业和个人都要考虑的一个问题"在一定成本下,如何使利润最大化"等.最优化方法是一种数学方法,它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称. 工程设计中最优化问题(optimalization problem)的一般提法是要选择一组参数(变量),在满足一系列有关的限制条件(约束)下,使设计
表达树就是根据后缀表达式来建立一个二叉树. 这个二叉树的每个叶子节点就是数,真祖先都是操作符. 通过栈来建立的,所以这里也会有很多栈的操作. 树的先序遍历,中序遍历,后序遍历的概念我就不讲了,不会的自行百度,不然也看不懂我的代码. 下面是代码: // // main.cpp // expressionTree // // Created by Alps on 14-7-29. // Copyright (c) 2014年 chen. All rights reserved. // #includ
关于 严格来说,本文题目应该是我的数据结构和算法学习之路,但这个写法实在太绕口--况且CS中的算法往往暗指数据结构和算法(例如算法导论指的实际上是数据结构和算法导论),所以我认为本文题目是合理的. 这篇文章讲了什么? 我这些年学习数据结构和算法的总结. 一些不错的算法书籍和教程. 算法的重要性. 初学 第一次接触数据结构是在大二下学期的数据结构课程.然而这门课程并没有让我入门--当时自己正忙于倒卖各种MP3和耳机,对于这些课程根本就不屑一顾--反正最后考试划个重点也能过,于是这门整个计算机专业本
?? 第一阶段:练经典经常使用算法,以下的每一个算法给我打上十到二十遍,同一时候自己精简代码, 由于太经常使用,所以要练到写时不用想,10-15分钟内打完,甚至关掉显示器都能够把程序打 出来. 1.最短路(Floyd.Dijstra,BellmanFord) 2.最小生成树(先写个prim,kruscal 要用并查集,不好写) 3.大数(高精度)加减乘除 4.二分查找. (代码可在五行以内) 5.叉乘.判线段相交.然后写个凸包. 6.BFS.DFS,同一时候熟练hash 表(要熟,要灵活,代码要
周总结:算法学习总结之DFS和BFS 一:DFS算法 目的:达到被搜索结构的叶节点. 定义:假定给定图G的初态是所有的定点都没有访问过,在G中任选一定点V为初始出发点,首先访问出发点并标记,然后依次从V出发搜索V的每个相邻点W,若W未曾出现过,则对W进行深度优先遍历(DFS),知道所有和V有路径相通的定点被访问. 如果从V0开始寻找一条长度为4的路径的话: 思路步骤: 先寻找V0的所有相邻点:dis{v1,v2,v3},V1没有访问过,所以对V1进行深度遍历并将V1标记为访问过,此时路径长度为1
动态规划 01背包 问题描述 求解思路 代码实现 放入哪些物品 代码 动态规划 我在上一篇博客里已经讲了一点动态规划了,传送门:算法学习 - 动态规划(DP问题)(C++) 这里说一下,遇到动态规划应该如何去想,才能找到解决办法. 最主要的其实是要找状态转移的方程,例如上一篇博客里面,找的就是当前两条生产线的第i个station的最短时间和上一时刻的时间关系. minTime(station[1][i]) = minTime(station[1][i-1] + time[i], station[
poj1330 在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,处理技巧就是在回溯到结点u的时候,u的子树已经遍历,这时候才把u结点放入合并集合中,这样u结点和所有u的子树中的结点的最近公共祖先就是u了,u和还未遍历的所有u的兄弟结点及子树中的最近公共祖先就是u的父亲结点.这样我们在对树深度遍历的时候就很自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的任意一对顶点的公共祖先都是相同的,也就是说这两个集合的最近公共祖先只有一个.时间复杂度为O(n+q