Machine Learning - Summary机器学习课程总结

机器学习Machine Learning - Andrew NG courses学习笔记

from:

时间: 2024-12-30 03:28:50

Machine Learning - Summary机器学习课程总结的相关文章

Machine Learning - XVII. Large Scale Machine Learning大规模机器学习 (Week 10)

http://blog.csdn.net/pipisorry/article/details/44904649 机器学习Machine Learning - Andrew NG courses学习笔记 Large Scale Machine Learning大规模机器学习 Learning With Large Datasets大数据集学习 Stochastic Gradient Descent随机梯度下降 Mini-Batch Gradient Descent迷你批处理梯度下降 Stochas

OpenCV Machine Learning Library 机器学习库总体结构探微

原创博客,转载请:http://blog.csdn.net/zhjm07054115/article/details/27577181 OpenCV Machine Learning Library 机器学习库总体结构探微

機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 课后习题解答

大家好,我是Mac Jiang,今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四的习题解答.笔者在做这些题目时遇到很多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目如何思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,如果各位博友发现错误请及时留言联系,谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习.理解课程的途径!希望我的博客对您的学习有所帮助!

機器學習基石(Machine Learning Foundations) 机器学习基石 作业二 课后习题解答

大家好,我是Mac Jiang,首先祝贺大家清明节快乐!作为一名苦逼的程序员,博主只能窝在实验室玩玩游戏,顺便趁着大早上没人发一篇微博.不过还是祝各位出行的兄弟玩的开心! 今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业二的习题解答.笔者在做这些题目时遇到很多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目如何思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,如果各位博

機器學習基石(Machine Learning Foundations) 机器学习基石 作业三 课后习题解答

今天和大家分享coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三的习题解答.笔者在做这些题目时遇到很多困难,当我在网上寻找答案时却找不到,而林老师又不提供答案,所以我就想把自己做题时对题目如何思考的写下来,为大家提供一些思路.当然,我对题目的理解不一定是正确的,如果各位博友发现错误请及时留言联系,谢谢!再次提醒:请不要以此博客作为通过考试的用途,还是更好学习.理解课程的途径!希望我的博客对您的学习有所帮助! 本文出处:http://blog

【Machine Learning】机器学习の特征

绘制了一张导图,有不对的地方欢迎指正: 下载地址 机器学习中,特征是很关键的.其中包括,特征的提取和特征的选择.他们是降维的两种方法,但又有所不同: 特征抽取(Feature Extraction):Creatting a subset of new features by combinations of the exsiting features.也就是说,特征抽取后的新特征是原来特征的一个映射. 特征选择(Feature Selection):choosing a subset of all

機器學習基石(Machine Learning Foundations) 机器学习基石 作业四 Q13-20 MATLAB实现

大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现.以前的代码都是通过C++实现的,但是发现C++实现这些代码太麻烦,这次作业还要频繁更改参数值,所以选择用MATLAB实现了.与C++相比,MATLAB实现显然轻松很多,在数据导入方面也更加方便.我的代码虽然能够得到正确答案,但是其中可能有某些思想或者细节是错误的,如果各位博友发现,请及时留言纠正,谢谢!再次声明,

機器學習基石(Machine Learning Foundations) 机器学习基石 作业三 Q18-20 C++实现

大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三 Q18-20的C++实现.虽然有很多大神已经在很多博客中给出了Phython的实现,但是给出C++实现的文章明显较少,这里为大家提供一条C++实现的思路!我的代码虽然能够得到正确答案,但是其中可能有某些思想或者细节是错误的,如果各位博友发现,请及时留言纠正,谢谢!再次声明,博主提供实现代码的原因不是为了让各位通过测试,而是为学习有困难的同学提供

機器學習基石(Machine Learning Foundations) 机器学习基石 作业三 Q13-15 C++实现

大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业三 Q6-10的C++实现.虽然有很多大神已经在很多博客中给出了Phython的实现,但是给出C++实现的文章明显较少,这里为大家提供一条C++实现的思路!我的代码虽然能够得到正确答案,但是其中可能有某些思想或者细节是错误的,如果各位博友发现,请及时留言纠正,谢谢!再次声明,博主提供实现代码的原因不是为了让各位通过测试,而是为学习有困难的同学提供一