Python数据分析:手把手教你用Pandas生成可视化图表

大家都知道,Matplotlib 是众多 Python 可视化包的鼻祖,也是Python最常用的标准可视化库,其功能非常强大,同时也非常复杂,想要搞明白并非易事。但自从Python进入3.0时代以后,pandas的使用变得更加普及,它的身影经常见于市场分析、爬虫、金融分析以及科学计算中。

作为数据分析工具的集大成者,pandas作者曾说,pandas中的可视化功能比plt更加简便和功能强大。实际上,如果是对图表细节有极高要求,那么建议大家使用matplotlib通过底层图表模块进行编码。当然,我们大部分人在工作中是不会有这样变态的要求的,所以一句import pandas as pd就足够应付全部的可视化工作了。下面,我们总结一下PD库的一些使用方法和入门技巧。

一、线型图 

对于pandas的内置数据类型,Series 和 DataFrame 都有一个用于生成各类 图表 的 plot 方法。 默认情况下, 它们所生成的是线型图。其实Series和DataFrame上的这个功能只是使用matplotlib库的plot()方法的简单包装实现。

参考以下示例代码 :

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randn(10,4),index=pd.date_range(‘2018/12/18‘,
   periods=10), columns=list(‘ABCD‘))

df.plot()

执行上面示例代码,得到以下结果 -

如果索引由日期组成,则调用gct().autofmt_xdate()来格式化x轴,如上图所示。

我们可以使用xy关键字绘制一列与另一列。

s = Series( np. random. randn( 10). cumsum(), index= np. arange( 0, 100, 10))
s. plot()

pandas 的大部分绘图方法都有 一个 可选的ax参数, 它可以是一个 matplotlib 的 subplot 对象。 这使你能够在网格 布局 中 更为灵活地处理 subplot 的位置。 DataFrame的plot 方法会在 一个 subplot 中为各列绘制 一条 线, 并自动创建图例( 如图所示):

df = DataFrame( np. random. randn( 10, 4). cumsum( 0), ...: columns=[‘ A‘, ‘B‘, ‘C‘, ‘D‘], index= np. arange( 0, 100, 10)) 

df. plot() 

二、柱状图

在生成线型图的代码中加上 kind=‘ bar‘( 垂直柱状图) 或 kind=‘ barh‘( 水平柱状图) 即可生成柱状图。 这时,Series 和 DataFrame 的索引将会被用 作 X( bar) 或 (barh)刻度:

In [59]: fig, axes = plt. subplots( 2, 1) 

In [60]: data = Series( np. random. rand( 16), index= list(‘ abcdefghijklmnop‘)) 

In [61]: data. plot( kind=‘ bar‘, ax= axes[ 0], color=‘ k‘, alpha= 0. 7) 

Out[ 61]: < matplotlib. axes. AxesSubplot at 0x4ee7750> 

In [62]: data. plot( kind=‘ barh‘, ax= axes[ 1], color=‘ k‘, alpha= 0.

对于 DataFrame, 柱状 图 会 将 每一 行的 值 分为 一组, 如图 8- 16 所示:

In [63]: df = DataFrame( np. random. rand( 6, 4), ...: index=[‘ one‘, ‘two‘, ‘three‘, ‘four‘, ‘five‘, ‘six‘], ...: columns= pd. Index([‘ A‘, ‘B‘, ‘C‘, ‘D‘], name=‘ Genus‘)) 

In [64]: df 

Out[ 64]: 

Genus 

          A         B         C         D
one 0. 301686 0. 156333 0. 371943 0. 270731
two 0. 750589 0. 525587 0. 689429 0. 358974
three 0. 381504 0. 667707 0. 473772 0. 632528
four 0. 942408 0. 180186 0. 708284 0. 641783
five 0. 840278 0. 909589 0. 010041 0. 653207
six 0. 062854 0. 589813 0. 811318 0. 060217 

In [65]: df. plot( kind=‘ bar‘)

三、条形图

现在通过创建一个条形图来看看条形图是什么。条形图可以通过以下方式来创建 -

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10,4),columns=[‘a‘,‘b‘,‘c‘,‘d‘])
df.plot.bar()

执行上面示例代码,得到以下结果 -

要生成一个堆积条形图,通过指定:pass stacked=True -

import pandas as pd
df = pd.DataFrame(np.random.rand(10,4),columns=[‘a‘,‘b‘,‘c‘,‘d‘])
df.plot.bar(stacked=True)

执行上面示例代码,得到以下结果 -

要获得水平条形图,使用barh()方法 -

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10,4),columns=[‘a‘,‘b‘,‘c‘,‘d‘])

df.plot.barh(stacked=True)

四、直方图

可以使用plot.hist()方法绘制直方图。我们可以指定bins的数量值。

import pandas as pd
import numpy as np

df = pd.DataFrame({‘a‘:np.random.randn(1000)+1,‘b‘:np.random.randn(1000),‘c‘:
np.random.randn(1000) - 1}, columns=[‘a‘, ‘b‘, ‘c‘])

df.plot.hist(bins=20)

执行上面示例代码,得到以下结果 -

要为每列绘制不同的直方图,请使用以下代码 -

import pandas as pd
import numpy as np

df=pd.DataFrame({‘a‘:np.random.randn(1000)+1,‘b‘:np.random.randn(1000),‘c‘:
np.random.randn(1000) - 1}, columns=[‘a‘, ‘b‘, ‘c‘])

df.hist(bins=20)

执行上面示例代码,得到以下结果 -

五、箱型图

Boxplot可以绘制调用Series.box.plot()DataFrame.box.plot()DataFrame.boxplot()来可视化每列中值的分布。

例如,这里是一个箱形图,表示对[0,1)上的统一随机变量的10次观察的五次试验。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(10, 5), columns=[‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘])
df.plot.box()

执行上面示例代码,得到以下结果 -

六、块型图

可以使用Series.plot.area()DataFrame.plot.area()方法创建区域图形。

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.rand(10, 4), columns=[‘a‘, ‘b‘, ‘c‘, ‘d‘])
df.plot.area()

执行上面示例代码,得到以下结果 -

七、散点图

可以使用DataFrame.plot.scatter()方法创建散点图。

import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.rand(50, 4), columns=[‘a‘, ‘b‘, ‘c‘, ‘d‘])
df.plot.scatter(x=‘a‘, y=‘b‘)

执行上面示例代码,得到以下结果 -

八、饼状图

饼状图可以使用DataFrame.plot.pie()方法创建。

import pandas as pd
import numpy as np

df = pd.DataFrame(3 * np.random.rand(4), index=[‘a‘, ‘b‘, ‘c‘, ‘d‘], columns=[‘x‘])
df.plot.pie(subplots=True)

执行上面示例代码,得到以下结果 -

 公众号python社区营

原文地址:https://www.cnblogs.com/pypypy/p/12147163.html

时间: 2024-10-01 06:43:34

Python数据分析:手把手教你用Pandas生成可视化图表的相关文章

小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame

在家为国家做贡献太无聊,不如跟我一起学点 Python 人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 引言 DataFrame 是由多种类型的列构成的二维标签数据结构. 简单理解是类似于 Excel . SQL 表的结构. DataFrame 是最常用的 Pandas 对象,与 Series 一样,Da

小白学 Python 数据分析(9):Pandas (八)数据预处理(2)

人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学

小白学 Python 数据分析(10):Pandas (九)数据运算

人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学

小白学 Python 数据分析(11):Pandas (十)数据分组

人生苦短,我用 Python 前文传送门: 小白学 Python 数据分析(1):数据分析基础 小白学 Python 数据分析(2):Pandas (一)概述 小白学 Python 数据分析(3):Pandas (二)数据结构 Series 小白学 Python 数据分析(4):Pandas (三)数据结构 DataFrame 小白学 Python 数据分析(5):Pandas (四)基础操作(1)查看数据 小白学 Python 数据分析(6):Pandas (五)基础操作(2)数据选择 小白学

高端实战 Python数据分析与机器学习实战 Numpy/Pandas/Matplotlib等常用库

课程简介:? ? 课程风格通俗易懂,真实案例实战.精心挑选真实的数据集为案例,通过Python数据科学库numpy,pandas,matplot结合机器学习库scikit-learn完成一些列的机器学习案例.课程以实战为基础,所有课时都结合代码演示如何使用这些python库来完成一个真实的数据案例.算法与项目相结合,选择经典kaggle项目,从数据预处理开始一步步代码实战带大家快速入门机器学习.旨在帮助同学们快速上手如何使用python库来完整机器学习案例. ------------------

萌新向Python数据分析及数据挖掘 第二章 pandas 第五节 Getting Started with pandas

Getting Started with pandas In [1]: import pandas as pd In [2]: from pandas import Series, DataFrame In [3]: import numpy as np np.random.seed(12345) import matplotlib.pyplot as plt plt.rc('figure', figsize=(10, 6)) PREVIOUS_MAX_ROWS = pd.options.dis

Python大佬手把手教你进行Pycharm活动模板配置

/1 前言/ 嘿,各位小伙伴大家好,今天Python进阶者又要带来什么奇技淫巧呢?期待一下吧~~ 今天给小火煲们带来的干货是Pycharm活动模板配置,来听我细细道来哈~ /2 什么是活动模板/ 话不多说,直接上图 活动模板配置.gif 很简单的一个示例,就是在pycharm中输入main关键字,会自动带出一些默认的代码,这个就是活动模板配置 可能有人会问,这个有什么用呢,我只能说,人因懒而伟大,本老鸟就是本着能少写代码就少写代码的态度,能懒则懒的态度,教各位小伙伴如何配置活动模板,投出更多的懒

手把手教你从数据库生成实体类(四)

根据上面获取的数据开始创建java文件 终于开始要创建java文件了. 但是-在创建java文件的时候要先吧之前获取的数稍微处理一下,将sql中的格式转换为java中的格式.比如属性名称,数据类型,class名称之类的,现在开始- 将表名称转换为合适的class名称 就是首字母大写,驼峰式的命名规范.例如将user_log或者USER_LOG转换为UserLog. 我们可以这么写: /** * 类名称转换 * * @param tableName * @return */ public stat

萌新向Python数据分析及数据挖掘 第二章 pandas 第二节 Python Language Basics, IPython, and Jupyter Notebooks

Python Language Basics, IPython, and Jupyter Notebooks In [5]: import numpy as np #导入numpy np.random.seed(12345)#设定再现的的随机数 np.set_printoptions(precision=4, suppress=True) #设置打印设置 Signature: np.set_printoptions(precision=None, threshold=None, edgeitem