机器学习库sklearn
官方documentation(资料)中分为不同的部分:
其中我们主要讲User Guide(机器学习算法理论介绍)、API(程序实现方法):
一、User Guide
https://scikit-learn.org/stable/user_guide.html
模块 | 说明 |
Supervised learning监督学习 | 监督学习的各种算法介绍 |
Unsupervised learning非监督学习 | 非监督学习的各种算法介绍 |
Model selection and evaluation模型选择和评价 | 交叉验证、调参、模型评价、验证曲线 |
Inspection检查 | |
Dataset transformations数据转换 | 特征抽取、数据预处理、缺失值处理、非监督降维方法、随机投影、核近似、转换预测目标 |
Dataset loading utilities数据下载程序 | 玩具数据、真实数据集、生成数据、下载其它数据 |
Computing with scikit-learn利用sklearn计算 | 对大数据集的计算策略、计算表现、并行计算、资源管理和配置 |
二、api
和前面的内容对应,这个内容里给了在sklearn里的实现方法。
模块 | 功能 |
sklearn.base module: Base classes and utility functions sklearn.calibration module: Probability Calibration(标准、标定) sklearn.cluster: Clustering sklearn.cluster.bicluster: Biclustering sklearn.compose: Composite Estimators sklearn.covariance: Covariance Estimators(协方差) sklearn.cross_decomposition: Cross decomposition(交叉分解) sklearn.datasets: Datasets sklearn.decomposition: Matrix Decomposition sklearn.discriminant_analysis: Discriminant Analysis(判别分析) sklearn.dummy: Dummy estimators sklearn.ensemble: Ensemble Methods sklearn.exceptions module(exceptions模块): Exceptions and warnings sklearn.experimental: Experimental sklearn.feature_extraction: Feature Extraction sklearn.feature_selection: Feature Selection sklearn.gaussian_process: Gaussian Processes sklearn.isotonic: Isotonic regression sklearn.impute: Impute sklearn.kernel_approximation Kernel Approximation sklearn.kernel_ridge Kernel Ridge Regression sklearn.linear_model: Generalized Linear Models? sklearn.manifold: Manifold Learning sklearn.metrics: Metrics sklearn.mixture: Gaussian Mixture Models sklearn.model_selection: Model Selection sklearn.multiclass: Multiclass and multilabel classification sklearn.multioutput: Multioutput regression and classification sklearn.naive_bayes: Naive Bayes sklearn.neighbors: Nearest Neighbors sklearn.neural_network: Neural network models sklearn.pipeline: Pipeline sklearn.inspection: inspection sklearn.preprocessing: Preprocessing and Normalization sklearn.random_projection: Random projection? sklearn.random_projection: Random projection? sklearn.svm: Support Vector Machines? sklearn.tree: Decision Trees? sklearn.utils: Utilities(实用程序) |
原文地址:https://www.cnblogs.com/ironan-liu/p/11785967.html
时间: 2024-10-12 19:18:37