loj 3014「JOI 2019 Final」独特的城市

loj

我本来是直接口胡了一个意思一样的做法的,但是因为觉得有点假+实现要用并查集(?)就卡了好一会儿...

对于一个点\(x\)来说,独特的点一定在它的最长链上,如果有独特的点不在最长链上,那么最长链上一定有和他到\(x\)距离相同的点,矛盾

然后对于一个点,最长链端点一定可以是直径的两端点之一,所以如果我们分别以树的直径的两端点为根进行dfs,那么一个点在其中一次dfs中,独特的点都会在到根的路径上,所以我们用栈维护到根的点,然后不同颜色数开桶来维护,每次压栈或弹栈时改变桶内元素个数,然后根据某个桶元素变化维护当前答案

然后在点\(x\)到根的路径上,其他挂出去的多余的链会往上覆盖掉一些点(也就是覆盖掉到\(x\)距离为某个值的点,它们不是独特的),导致这些点不能贡献答案.所以在dfs进别的子树时要用这些没用到的链来删掉一些点.具体来讲,dfs某个点时把父亲压入栈;在之前先预处理一个点子树内最长链长度以及次长链长度(最长链次长链要来自不同子树),然后先把到\(x\)距离\(\le\)次长链长度的栈里的点弹掉,递归处理最长链所在子树,再把到\(x\)距离\(\le\)最长链长度的栈里的点弹掉,这个时候维护的颜色种数就是当前这个点的答案,可以直接更新答案,之后递归其他子树处理.每个点答案为两个直径端点算出的值的max

#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double

using namespace std;
const int N=2e5+10;
int rd()
{
    int x=0,w=1;char ch=0;
    while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    return x*w;
}
int to[N<<1],nt[N<<1],hd[N],tot=1;
void add(int x,int y)
{
    ++tot,to[tot]=y,nt[tot]=hd[x],hd[x]=tot;
    ++tot,to[tot]=x,nt[tot]=hd[y],hd[y]=tot;
}
int n,m,an[N],a[N],mx,r1,r2;
void dd(int x,int ffa,int de)
{
    if(mx<de) mx=de,r2=x;
    for(int i=hd[x];i;i=nt[i])
    {
        int y=to[i];
        if(y==ffa) continue;
        dd(y,x,de+1);
    }
}
int de[N],dp[N],dp2[N],hs[N],stk[N],tp,bk[N],na;
void dfs1(int x,int ffa)
{
    hs[x]=dp[x]=dp2[x]=0;
    if(ffa&&!nt[hd[x]]){dp[x]=de[x];return;}
    for(int i=hd[x];i;i=nt[i])
    {
        int y=to[i];
        if(y==ffa) continue;
        de[y]=de[x]+1,dfs1(y,x);
        if(dp[y]>=dp[x]) hs[x]=y,dp2[x]=dp[x],dp[x]=dp[y];
        else if(dp[y]>=dp2[x]) dp2[x]=dp[y];
    }
}
void dfs3(int x,int ffa)
{
    if(ffa) stk[++tp]=ffa,na+=!bk[a[ffa]],++bk[a[ffa]];
    if(!hs[x]) an[x]=max(an[x],na);
    else
    {
        while(tp&&de[x]-de[stk[tp]]<=dp2[x]-de[x])
            --bk[a[stk[tp]]],na-=!bk[a[stk[tp]]],--tp;
        dfs3(hs[x],x);
        while(tp&&de[x]-de[stk[tp]]<=dp[x]-de[x])
            --bk[a[stk[tp]]],na-=!bk[a[stk[tp]]],--tp;
        an[x]=max(an[x],na);
        for(int i=hd[x];i;i=nt[i])
        {
            int y=to[i];
            if(y==ffa||y==hs[x]) continue;
            dfs3(y,x);
        }
    }
    if(ffa&&stk[tp]==ffa) --bk[a[ffa]],na-=!bk[a[ffa]],--tp;
}
void wk(int rt)
{
    de[rt]=0,dfs1(rt,0);
    dfs3(rt,0);
}

int main()
{
    n=rd(),m=rd();
    for(int i=1;i<n;++i) add(rd(),rd());
    for(int i=1;i<=n;++i) a[i]=rd();
    mx=-1,dd(1,0,0),r1=r2;
    mx=-1,dd(r1,0,0);
    wk(r1),wk(r2);
    for(int i=1;i<=n;++i) printf("%d\n",an[i]);
    return 0;
}

原文地址:https://www.cnblogs.com/smyjr/p/11657526.html

时间: 2024-11-07 08:30:55

loj 3014「JOI 2019 Final」独特的城市的相关文章

loj 2759「JOI 2014 Final」飞天鼠

loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高)就不做,因为如果提前做了,可能会导致后面要浪费一些步数使得移动合法.然后这个移动过程就会分成两段,先是一直移动或者下降,不用上升,然后会每次上升再移动,一直到终点 先看前一段的移动,如果移动的时候正好能移到下一棵树就直接移,如果移的时候高度过高就往下移一点直到能正好移动到下一棵树上.这里对每个点记\

loj#2334 「JOI 2017 Final」JOIOI 王国

分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace std; int a[2010][2010],n,m,Ans=1e9+7,mx,mn=1e9+7; inline bool ck(int x){ int i,j,k,l=mn+x,r=mx-x,lim=m; for(i=1;i<=n;i++){ for(j=1;j<=lim;j++) if(a[i]

【2018.10.1】「JOI 2014 Final」年轮蛋糕

题面 一看到求“最小值的最大值”这种问题,就能想到二分了. 二分答案,然后判然后把环展开成2倍长度的链,先钦定一个起点, 原文地址:https://www.cnblogs.com/scx2015noip-as-php/p/9734669.html

Libre OJ P2332「JOI 2017 Final」焚风现象【差分思想】By cellur925

题目传送门 这道题开始看起来会很晕...\(qwq\).首先我们要明确题目中的海拔&&温度.温度是受海拔影响的,每次改变的是海拔,我们求的是温度. 我们开始读入的时候便可以处理出开始\(N\)位置的温度以及各个位置的海拔差.每次读入影响的是一段区间,区间内的相对海拔是不变的因此温度也不会变.只有区间的边界可能受到影响.因此我们只要处理边界就行了:这便是差分的思想. 比如有\([l,r]\)区间需要处理,那么我们把\(l\)位置的原答案减去,把\(l\)位置的海拔改变,并加上新答案.再对\(

loj #3146. 「APIO 2019」路灯

loj #3146. 「APIO 2019」路灯 暴力的话就是查询\((l,r)\)之间是否全部是1,考虑如何优化查询 我们可以利用\(set\)来维护每一个全\(1\)区间和它出现的时间,具体的,用\((lp,rp,l,r)\)来表示\((lp,rp)\)的全\(1\)区间在时间\([l,r]\)中是存在的 那么对于一个在时间\(i\)的询问\((l_i,r_i)\),\((lp,rp,l,r)\)会对它产生贡献当且仅当\(lp\leq l_i,rp\geq r_i,i\geq l\),产生的

loj #3144. 「APIO 2019」奇怪装置

loj #3144. 「APIO 2019」奇怪装置 很明显的是我们需要找到\((x,y)\)的循环节的长度 当\(t=0\)时,\(x=0,y=0\) 当\(t\neq 0\)时,仍然要使的\(x=0,y=0\)的话,必有 \[ \begin{cases} t+\lfloor \frac{t}{B} \rfloor \equiv0(mod\ A)\t\equiv0(mod\ B) \end{cases} \] 记\(t=t'B\),则有\(A|t'(B+1)\),故\(t'\)最小为\(\fr

[LOJ#2325]「清华集训 2017」小Y和恐怖的奴隶主

[LOJ#2325]「清华集训 2017」小Y和恐怖的奴隶主 试题描述 "A fight? Count me in!" 要打架了,算我一个. "Everyone, get in here!" 所有人,都过来! 小Y是一个喜欢玩游戏的OIer.一天,她正在玩一款游戏,要打一个Boss. 虽然这个Boss有 \(10^{100}\) 点生命值,但它只带了一个随从--一个只有 \(m\) 点生命值的"恐怖的奴隶主". 这个"恐怖的奴隶主&qu

[LOJ#2328]「清华集训 2017」避难所

[LOJ#2328]「清华集训 2017」避难所 试题描述 "B君啊,你当年的伙伴都不在北京了,为什么你还在北京呢?" "大概是因为出了一些事故吧,否则这道题就不叫避难所了." "唔,那你之后会去哪呢?" "去一个没有冬天的地方." 对于一个正整数 \(n\),我们定义他在 \(b\) 进制下,各个位上的数的乘积为 \(p = F(n, b)\). 比如 \(F(3338, 10) = 216\). 考虑这样一个问题,已知 \

[LOJ#2327]「清华集训 2017」福若格斯

[LOJ#2327]「清华集训 2017」福若格斯 试题描述 小d是4xx9小游戏高手. 有一天,小d发现了一个很经典的小游戏:跳青蛙. 游戏在一个 \(5\) 个格子的棋盘上进行.在游戏的一开始,最左边的两个格子上各有一个向右的青蛙,最右边的两个格子上各有一个向左的青蛙. 每次移动可以选取一个青蛙,向这只青蛙的前方移动一格到空格子中或跳过前方的一个不同朝向的青蛙并移动到空格子中. 为了使你更好地理解这个游戏,我们下发了一个游戏demo作为参考(注意:这个demo中的棋盘大小和题目中并不相同).