DiffieHellman(迪菲-赫尔曼)密钥交换算法原理及其实现

本文参考来源https://segmentfault.com/a/1190000010917737https://zh.wikipedia.org/wiki/%E6%A8%A1%E9%99%A4  及其 https://www.cnblogs.com/DarkValkyrie/p/10962231.html (大佬的这篇文章的基础公式帮了大忙)

什么是Diffie-Hellman密钥交换算法?

  Diffie-Hellman:一种确保共享KEY安全穿越不安全网络的方法,它是OAKLEY的一个组成部分。Whitefield与Martin Hellman在1976年提出了一个奇妙的密钥交换协议,称为Diffie-Hellman密钥交换协议/算法(Diffie-Hellman Key Exchange/Agreement Algorithm).这个机制的巧妙在于需要安全通信的双方可以用这个方法确定对称密钥。然后可以用这个密钥进行加密和解密。但是注意,这个密钥交换协议/算法只能用于密钥的交换,而不能进行消息的加密和解密。双方确定要用的密钥后,要使用其他对称密钥操作加密算法实现加密和解密消息。

算法绪论 --- 取模运算规则

  • 模运算与基本四则运算有些相似,但是除法例外。其规则如下:
  1. (a + b) % p = (a % p + b % p) % p (1)
  2. (a - b) % p = (a % p - b % p) % p (2)
  3. (a * b) % p = (a % p * b % p) % p (3)
  4. a ^ b % p = ((a % p)^b) % p (4)
  • 结合律:
  1. ((a+b) % p + c) % p = (a + (b+c) % p) % p (5)
  2. ((a*b) % p * c)% p = (a * (b*c) % p) % p (6)
  • 交换律:
  1. (a + b) % p = (b+a) % p (7)
  2. (a * b) % p = (b * a) % p (8)
  • 分配律:
  1. (a+b) % p = ( a % p + b % p ) % p (9)
  2. ((a +b)% p * c) % p = ((a * c) % p + (b * c) % p) % p (10)

首先DiffieHellman密钥交换算法的数论基础为

1.(a^Xa mod p)^Xb mod p = a^(Xa * Xb) mod p

2.取模操作的等价性及其交换律

1>. (a mod n) mod n = a mod n  等价性

2>. a ^ b % p = ((a % p)^b) % p

算法实现原理:

1. 假设客户端、服务端挑选两个素数a、p(都公开),然后

  • 客户端:选择自然数Xa,Ya = a^Xa mod p,并将Ya发送给服务端;
  • 服务端:选择自然数Xb,Yb = a^Xb mod p,并将Yb发送给客户端;
  • 客户端:计算 Ka = Yb^Xa mod p
  • 服务端:计算 Kb = Ya^Xb mod p

?推导过程

Ka  = Yb^Xa mod p

= (a^Xb mod p)^Xa mod p

==>  (a^Xb mod p)^Xa mod p  该式子由4可以拆分为  (a^Xb)^Xa  mod  p

= a^(Xb * Xa) mod p

= (a^Xa mod p)^Xb mod p

= Ya^Xb mod p

= Kb

可以看到,尽管客户端、服务端彼此不知道对方的Xa、Xb,但算出了相等的secret。

Nodejs代码示例

结合前面小结的介绍来看下面代码,其中,要点之一就是client、server采用相同的素数a、p。

var crypto = require(‘crypto’);

var primeLength = 1024;  // 素数p的长度
var generator = 5;  // 素数a
// 创建客户端的DH实例
var client = crypto.createDiffieHellman(primeLength, generator);
// 产生公、私钥对,Ya = a^Xa mod pvar
clientKey = client.generateKeys();
// 创建服务端的DH实例,采用跟客户端相同的素数a、p
var server = crypto.createDiffieHellman(client.getPrime(), client.getGenerator());
// 产生公、私钥对,Yb = a^Xb mod p
var serverKey = server.generateKeys();
// 计算 Ka = Yb^Xa mod p
var clientSecret = client.computeSecret(server.getPublicKey());
// 计算 Kb = Ya^Xb mod p
var serverSecret = server.computeSecret(client.getPublicKey());
// 由于素数p是动态生成的,所以每次打印都不一样
// 但是 clientSecret === serverSecret
console.log(clientSecret.toString(‘hex‘));
console.log(serverSecret.toString(‘hex‘));

  

????

原文地址:https://www.cnblogs.com/pig1314/p/11618632.html

时间: 2024-11-10 15:25:58

DiffieHellman(迪菲-赫尔曼)密钥交换算法原理及其实现的相关文章

迪菲.赫尔曼(Diffie–Hellman)密钥交换算法

迪菲.赫尔曼算法是通信线路不安全情况下,交换密钥的一个算法,应用于TLS协议中 首先说一下生成密钥的流程,我们有这样一种计算叫做求摸运算 mod, 比如:27 mod 17 = 10,也就是求余数的运算. 现在有两个通信者A和B,我们使用一种计算 假如我们这里选用 3 ^ x mod 17,A和B分别生成一个随机的整数,这个整数即为x,比如A是2,B是3,那么A使用2计算: 3^2 mod 17 = 9 ① B使用3计算: 3^3 mode 17 = 10 ② 然后A将9发送给B,B将10发送给

迪菲-赫尔曼算法的简单数学证明

今天老师给我们讲了迪菲-赫尔曼算法,大概意思是通信双方不需要知道对方是谁都能通信. 以下的图片来自维基百科 只要Alice的K等于Bob的K双方就可以通信了,现在问题来了,我用了几组数据去做测试,都能得到相同的结果,为什么经过上面的数学的换算的结果是想等的?于是激起了我这个数学白痴的求知欲,证明可能吧严谨甚至有错,希望路过的大神们指教指教. 问题转换为: 证明 (A^a mod B)^m mod B=A^am mod B 恒成立 令X=A^a, (X mod B)^m mod B=X^m mod

赫尔曼算法及应用

借鉴的博客: http://baike.sogou.com/v111784.htm http://blog.csdn.net/cqnuztq/article/details/8919204 http://blog.csdn.net/pony_maggie/article/details/41620389 http://blog.csdn.net/JavaAlpha/article/details/4222845 实现代码: 1 #include <iostream> 2 #define MAX

DH 密钥交换算法

1.引言 CSDN搞什么短信验证,7年的账号居然登陆不了,真心抓狂,WTF!!!! DH,全称为"Diffie-Hellman",这是一种确保共享KEY安全穿越不安全网络的方法,换句话说就是密钥一致协议,由公开密钥密码体制的奠基人Diffie和Hellman所提出的一种思想. 简单的说就是允许两名用户在公开媒体上交换信息以生成"一致"的.可以共享的密钥.也就是由甲方产出一对密钥(公钥.私钥),乙方依照甲方公钥产生乙方密钥对(公钥.私钥).它可以让双方在完全没有对方任

php 二叉树 与赫夫曼树

在学习图之前,中间休息了两天,感觉二叉树需要消化一下.所以中间去温习了下sql,推荐一本工具书<程序员的SQL金典>看名字不像一本好书,但是作为一个不错的SQL工具书还是可以小小备忘一下.涵盖内容不详细但是挺广,覆盖多种主流数据库 言归正传,以前知道折半查找,二叉树的概念也是感觉挺有意思,二叉树的实现有一个案例很不错,代码如下 class BiNode{ public $data; public $lchild; public $rchild; public function __constr

经典算法题每日演练——第十三题 赫夫曼树

原文:经典算法题每日演练--第十三题 赫夫曼树 赫夫曼树又称最优二叉树,也就是带权路径最短的树,对于赫夫曼树,我想大家对它是非常的熟悉,也知道它的应用场景, 但是有没有自己亲手写过,这个我就不清楚了,不管以前写没写,这一篇我们来玩一把. 一:概念 赫夫曼树里面有几个概念,也是非常简单的,先来看下面的图: 1. 基础概念 <1>  节点的权: 节点中红色部分就是权,在实际应用中,我们用“字符”出现的次数作为权. <2>  路径长度:可以理解成该节点到根节点的层数,比如:“A”到根节点

赫夫曼树JAVA实现及分析

一,介绍 1)构造赫夫曼树的算法是一个贪心算法,贪心的地方在于:总是选取当前频率(权值)最低的两个结点来进行合并,构造新结点. 2)使用最小堆来选取频率最小的节点,有助于提高算法效率,因为要选频率最低的,要么用排序,要么用堆.用堆的话,出堆的复杂度为O(logN),而向堆中插入一个元素的平均时间复杂度为O(1),在构建赫夫曼树的过程中,新生成的结点需要插入到原来的队列中,故用堆来维持这种顺序比排序算法要高效地多. 二,赫夫曼算法分析 ①用到的数据结构分析 首先需要构造一棵赫夫曼树,因此需要二叉链

13.赫夫曼树及其应用

一.赫夫曼树定义与原理 1.路径长度:从树中一个结点到另一个结点之间的分支构成两个结点之间的路径,路径上的分支数目称作路径的长度; 2.树的路径长度:即从树根到每一结点的路径长度之和; 3.结点的带权的路径长度:即从该结点从到树根之间的路径长度与结点上权的乘积; 4.树的带权路径长度:为树中所有叶子结点的带权路径长度之和; 5.赫夫曼树定义:假设有n个权值{w1,w2,....,wn},构造一颗有n个叶子结点的二叉树,每个叶子结点带权wk,每个叶子的路径长度为lk,则其中带权路径长度WPL最小的

构造最优二叉树-赫夫曼(Huffman)树算法

一.基本概念 1.赫夫曼(Huffman)树又称最优二叉树或最优搜索树,是一种带权路径长度最短的二叉树.在许多应用中,常常赋给树中结点一个有某种意义的实数,称此实数为该结点的权.从树根结点到该结点之间的路径长度与该结点上权的乘积称为结点的带权路径长度(WPL),树中所有叶子结点的带权路径长度之和称为该树的带权路径长度,通常记为: 2.两结点间的路径:从一结点到另一结点所经过的结点序列;路径长度:从根结点到相应结点路径上的分支数目;树的路径长度:从根到每一结点的路径长度之和. 3.深度为k,结点数