CF#609E|二分+树状数组

队友发了一道cf的题过来,然后。。一上午就做了一道题。。

CF#609E 题目地址
复习树状数组求逆序数1
复习树状数组求逆序数2
参考博客1
参考博客2

题目大意:每次可以移动相邻的结点,求最小能够出现1~k子序列的交换次数

思路:
最小交换次数,首先想到与逆序数有关,以前做过类似的题,3 2 1,交换成 1 2 3的最小次数,就是求 3 2 1这个序列的逆序数=3
这题稍微有点变化,就是3 2 1 中间可能还存在 其它数字,比如 3 4 5 2 1,要我们求 出现 3 2 1 的最小交换次数;
可以想到,把 4 和 5 剔除,先把 3 2 1移动在一起,再求逆序数;所有最后的答案 = 剔除4、5的次数 + 321逆序数的值。
求逆序数,套树状数组的模板就可以了。
所以重点是求剔除4和5多余元素的最少交换次数,这里就要用到二分,二分最少的中间位置,求出最合适的交换次数,二分的是 最合适的中间位置,使得左右平衡交换次数最少。
可以用每个数和中间位置的 (位置差-1) 来表示需要的交换次数, 这里可以用另外一个树状数组, 记录每个 <=i 的位置前缀和来实现,就是sum2数组。
所以最后总结:
建两个树状数组:
1.sum1(i)维护表示前i个位置中已经出现了多少个比当前数要小的数的个数
2.sum2(i) 表示前i个位置中所有比当前数小的位置和
3.二分sum2,公式求和,参考上面的博客2

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
const int maxn = 2e5+5;
ll sum1[maxn];
ll sum2[maxn];
ll a[maxn];
ll pos[maxn];
int n;

//树状数组模板
ll lowbit(ll x){
    return x & -x;
}
void add(ll *sum,ll x,ll v){
    while(x <= n){
        sum[x] += v;
        x += lowbit(x);
    }
}
ll query(ll *sum,ll x){
    ll res = 0;
    while(x > 0){
        res += sum[x];
        x -= lowbit(x);
    }
    return res;
} 

int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
        pos[a[i]] = i;//值为a[i]的元素 "位置"在为i的地方
    }
    ll ans1 = 0;
    for(int i=1;i<=n;i++){
        ans1 += i - 1 - query(sum1,pos[i]); //求逆序数 和相加
        add(sum1,pos[i],1); //前i个位置中已经出现了的比当前数要小的数的个数+1
        add(sum2,pos[i],pos[i]); //比第i个位置小的 位置+pos[i]
        int mid,l = 1,r = n;
        while(l<=r){ //二分需要靠拢的最中间的位置
            mid = (l+r)>>1;
            if(query(sum1,mid)*2 <= i) l = mid+1;
            else r = mid - 1;
        }
        //将mid左边的数靠拢到mid附近的花费
        //cnt:mid左边部分的个数 sum1(mid):维护的是前mid个元素的比mid小的元素个数(比mid小才需要移动)
        //sum:mid前的位置和  sum2(mid)维护的是第mid个元素前的所有元素的位置和
        ll ans2 = 0;
        ll cnt = query(sum1,mid);
        ll sum = query(sum2,mid);
        ans2 += mid*cnt-sum-cnt*(cnt-1)/2;
        //将mid右边的数靠拢到mid附近的花费
        //cnt是每个mid右边的个数 sum = 总的所有元素位置和 - mid前位置和 = 右边元素位置和
        cnt = i-cnt;
        sum = query(sum2,n) - sum;
        ans2 += sum-cnt*(mid+1)-cnt*(cnt-1)/2;
        cout<<ans1+ans2<<" ";
    }
    return 0;
} 

原文地址:https://www.cnblogs.com/fisherss/p/12106618.html

时间: 2024-11-08 03:52:28

CF#609E|二分+树状数组的相关文章

11525 - Permutation(二分+树状数组)

题目链接:点击打开链接 题意:从1~k的所有排列中找到第n个排列, n由公式给出. 思路:可以发现, 这个公式就是康托展开公式(康托展开百科:点击打开链接). 那么s[i]的意思就是i个数中当前数排在第几. 如此, 可以用二分+树状数组快速求解, 和一道BC题目神似. 细节参见代码: #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<st

Codeforces 374D Inna and Sequence 二分+树状数组

题目链接:点击打开链接 给定n个操作,m长的序列a 下面n个数 if(co>=0)则向字符串添加一个co (开始是空字符串) else 删除字符串中有a的下标的字符 直接在序列上搞,简单模拟 #include<stdio.h> #include<iostream> #include<string.h> #include<set> #include<vector> #include<map> #include<math.h&

【bzoj2527】[Poi2011]Meteors 整体二分+树状数组

题目描述 有N个成员国.现在它发现了一颗新的星球,这颗星球的轨道被分为M份(第M份和第1份相邻),第i份上有第Ai个国家的太空站. 这个星球经常会下陨石雨.BIU已经预测了接下来K场陨石雨的情况.BIU的第i个成员国希望能够收集Pi单位的陨石样本.你的任务是判断对于每个国家,它需要在第几次陨石雨之后,才能收集足够的陨石. 输入 第一行是两个数N,M. 第二行有M个数,第i个数Oi表示第i段轨道上有第Oi个国家的太空站. 第三行有N个数,第i个数Pi表示第i个国家希望收集的陨石数量. 第四行有一个

【51nod】 第K大区间2(二分+树状数组)

[51nod] 第K大区间2(二分+树状数组) 第K大区间2 ﹡    LH (命题人) 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 160 定义一个长度为奇数的区间的值为其所包含的的元素的中位数.中位数_百度百科 现给出n个数,求将所有长度为奇数的区间的值排序后,第K大的值为多少. 样例解释: [l,r]表示区间的值 [1]:3 [2]:1 [3]:2 [4]:4 [1,3]:2 [2,4]:2 第三大是2 Input 第一行两个数n和k(1<=n<=100000,k&l

【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. Input 第一行N,M 接下来M行,每行形如1 a b c或2 a b c Output 输出每个询问的结果 Sample Input 2 5 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 Sample Output 1 2 1 HINT

【BZOJ-2527】Meteors 整体二分 + 树状数组

2527: [Poi2011]Meteors Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 831  Solved: 306[Submit][Status][Discuss] Description Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby galaxy. The planet is unsuitable for colo

【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少. 输入 第一行N,M接下来M行,每行形如1 a b c或2 a b c 输出 输出每个询问的结果 样例输入 2 5 1 1 2 1 1 1 2 2 2 1 1 2 2 1 1 1 2 1 2 3 样例输出 1 2 1 题解 整体二分+树状数组区间修改 当年naive的树套树题解 前两天由于要

Codeforces Round #470 (Div 2) B 数学 C 二分+树状数组 D 字典树

Codeforces Round #470 B. Primal Sport 数学题,对 x2 和 x1 分解质因子即可. #include<bits/stdc++.h> using namespace std; #pragma comment(linker, "/STACK:102400000,102400000") #define rep(i,a,b) for (int i=a; i<=b; ++i) #define per(i,b,a) for (int i=b;

cf 602 D 二分+树状数组

This is the harder version of the problem. In this version, 1≤n,m≤2⋅1051≤n,m≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems. You are given a sequence of integers a=[a1,a2,…,an