莫比乌斯反演题目列表

前言:

本题表中,凡是涉及\(n、m\),都默认\(n \leq m\)。

Part1

这些题目都非常水,莫比乌斯反演入门题,
主要是对莫比乌斯反演应用有一个基本概念。

1.[HAOI2011]Problem b

(具体题目戳我)
题目:一组数据(\(a、d、c、d \leq 5×10^4\))求
\[\sum_{i=a}^{b} \sum_{j=c}^d [gcd(i,j)=d]\]
题解:
\[\sum_{i=1}^{n} \sum_{j=1}^m [gcd(i,j)=d] = \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j)=1] = \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \mu(i)\lfloor \frac{\lfloor \frac{n}{d} \rfloor}{i} \rfloor * \lfloor \frac{\lfloor \frac{m}{d} \rfloor}{i} \rfloor\]
数论分块,然后二维容斥即可。

2.[NOI2010]能量采集

(具体题目戳我)
题目:一组数据(\(n、m \leq 10^5\)),求
\[2*\sum_{i=1}^n \sum_{j=1}^m gcd(i,j) - n*m\]
题解:
\[\sum_{i=1}^n \sum_{j=1}^m gcd(i,j) =\sum_{d=1}^nd \sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j)=1] \]
枚举\(d\),然后用第1题的方法搞即可。

3.Gcd

(具体题目戳我)
题目:一组数据,给定整数\(N(N\leq10^7)\),求\(1 \leq x,y \leq N\)且\(Gcd(x,y)\)为素数的组数
题解:
\[\sum_{i=1}^n \sum_{j=1}^m gcd(i,j) =\sum_{d=2}^{d \leq n} d\sum_{i=1}^{\lfloor \frac{n}{d} \rfloor} \sum_{j=1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j)=1] \]
枚举素数\(d\),然后用第1题的方法搞即可。

4.[中山市选2011]完全平方数

(具体题目戳我)
题目:\(50\)组数据,给出\(k\),求第\(k\)个不是完全平方数的倍数的数是多少。\(k \leq 10^9\)
题解:
先二分一个\(n\),然后检查\(n\)下面有多少个非完全平方数。计算方法为:
设\(f(i)\)表示只为\(i^2\)倍数,并且不是其它平方数倍数的数的个数。
那么令\(F(i) = f(i)+f(2i)+....+f(ki)\),即为\((ri)^2\)倍数的数的个数。
那么\(F(i) = \sum_{i|d} f(d)\)。显然\(F(n) = \lfloor \frac{n}{i^2} \rfloor\)
反演一下:
\[f(1) = \sum_{i=1}^n \lfloor \frac{n}{i^2} \rfloor\]
直接数论分块即可得到一个数\(n\)的排名\(f(1)\)。

原文地址:https://www.cnblogs.com/GuessYCB/p/8277359.html

时间: 2024-11-06 19:45:14

莫比乌斯反演题目列表的相关文章

hdu1695(莫比乌斯反演)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b],  y 属于 [c, d], 求 gcd(x, y) = k 的 x, y 的对数 . 其中 a = b = 1 . 注意: (x, y), (y, x) 算一种情况 . 思路: 莫比乌斯反演 可以参考一下: http://blog.csdn.net/lixuepeng_001/article/details/5057

容斥原理与莫比乌斯反演的关系

//容斥原理,c[i]表示i当前要算的次数,复杂度和第二层循环相关 O(nlogn~n^2) LL in_exclusion(int n,int *c) { for(int i=0;i<=n;i++) c[i]=1; //不一定是这样初始化,要算到的才初始化为1 LL ans=0; for(int i=0;i<=n;i++) if(i要算) { ans+=(统计数)*c[i]; for(int j=i+1;j<=n;j++) if(i会算到j) c[j]-=c[i];//j要算的次数减去

BZOJ 1114 Number theory(莫比乌斯反演+预处理)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=71738 题意:给你一个整数序列a1, a2, a3, ... , an.求gcd(ai, aj) = 1 且 i < j的对数. 思路:利用莫比乌斯反演很快就能得到公式,但是求解时我们要知道序列中1, 2, 3, ... , max(a1, a2, ... , an)的倍数各是多少.我们用num[i]=k,来表示序列中有k个数是i的倍数,那么这部分对结果的影响是m

bzoj 1101 [POI2007]Zap - 莫比乌斯反演

Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a ,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到你的帮助. Input 第一行包含一个正整数n,表示一共有n组询问.(1<=n<= 50000)接下来n行,每行表示一个询问,每行三个 正整数,分别为a,b,d.(1<=d<=a,b<=50000) Output 对于每组询问,输出到输出文件zap.out一个正

hdu_1695: GCD 【莫比乌斯反演】

题目链接 这题求[1,n],[1,m]gcd为k的对数.而且没有顺序. 设F(n)为公约数为n的组数个数 f(n)为最大公约数为n的组数个数 然后在纸上手动验一下F(n)和f(n)的关系,直接套公式就好了.注意要删去重复的. 关于 莫比乌斯反演 的结论 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int maxn=1e6; int prime[maxn+5]; bool check[maxn+

bnu——GCD SUM (莫比乌斯反演)

题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 1 #include<stdio.h> 2 #define N 100001 3 typedef long long LL; 4 bool pri[N]={0}; 5 int prim[N],po=0; 6 int mu[N]; 7 LL f[N],ff[N]; //缩短时间 8 /* 9 莫比乌斯函数mu[i]的定义: 10 1. 如

bzoj 2440 简单莫比乌斯反演

题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 容斥原理的思想,首先考虑所有数都属于非平方数 那么就是x 然后对于每一个平方数都要减去,但是这里应该只考虑质数的平方数就可以了 那么就扩展为x - x/(2^2) - x/(3^2) - x/(k^2).... 然后因为中间存在重复减的那么要加回来 -> x - x/(2^2) - x/(3^3) 

莫比乌斯反演介绍

转自:http://blog.csdn.net/acdreamers/article/details/8542292 莫比乌斯反演在数论中占有重要的地位,许多情况下能大大简化运算.那么我们先来认识莫比乌斯反演公式. 定理:和是定义在非负整数集合上的两个函数,并且满足条件,那么我们得到结论 在上面的公式中有一个函数,它的定义如下: (1)若,那么 (2)若,均为互异素数,那么 (3)其它情况下 对于函数,它有如下的常见性质: (1)对任意正整数有 (2)对任意正整数有 1 void Init()

HDU 1695 (莫比乌斯反演) GCD

题意: 从区间[1, b]和[1, d]中分别选一个x, y,使得gcd(x, y) = k, 求满足条件的xy的对数(不区分xy的顺序) 分析: 虽然之前写过一个莫比乌斯反演的总结,可遇到这道题还是不知道怎么应用. 这里有关于莫比乌斯反演的知识,而且最后的例题中就有这道题并给出了公式的推导. 1 #include <cstdio> 2 #include <algorithm> 3 typedef long long LL; 4 5 const int maxn = 1000000