01-复杂度3 二分查找

  这道题是一道函数题,题目给好相应接口让完成该子函数。给定的函数接口和结构体定义如下:

#include <stdio.h>
#include <stdlib.h>

#define MAXSIZE 10
#define NotFound 0
typedef int ElementType;

typedef int Position;
typedef struct LNode *List;
struct LNode {
    ElementType Data[MAXSIZE];
    Position Last; /* 保存线性表中最后一个元素的位置 */
};

Position BinarySearch( List L, ElementType X );

  可以看出是要完成对用链表存储的一个线性表进行二分查找,完成程序如下:

Position BinarySearch(List L, ElementType X)
{
    Position Left, Right, Mid;
    Left = 1;
    Right = L->Last;
    while(Left <= Right){
        Mid = (Left + Right) / 2;
        if(X > L->Data[Mid])
            Left = Mid + 1;
        else if(X < L->Data[Mid])
            Right = Mid - 1;
        else
            return Mid;
    }
    return NotFound;
}

  需要注意的一点是while循环条件需是Left <= Right,否则两者指同一个数时会不进入循环判断就直接认为“NotFound”,导致结果不正确。

原文地址:https://www.cnblogs.com/biankun/p/8541148.html

时间: 2024-10-06 16:08:48

01-复杂度3 二分查找的相关文章

查询资料:二分查找法

二分查找 编辑 同义词 二分查找法一般指二分查找 二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到

[01]Binary Search二分查找

Binary Search二分查找 作用:二分查找适用于有序的的数组或列表中,如果列表及数组中有n个元素,通过二分查找查询某一元素的位置需要的步骤是log2(n)(注:该log的底数是2) 1.Python实现 def binary_search(list,item): low = 0 high = len(list)-1 #python数组ID从0开始,与matlab不同. t = 0 while low <= high: t = t + 1; mid = round((low + high)

二分查找算法的递归实现

还有一个典型的递归例子是对已排序数组的二分查找算法.博e百娱乐城 现在有一个已经排序好的数组,要在这个数组中查找一个元素,以确定它是否在这个数组中,很一般的想法是顺序检查每个元素,看它是否与待查找元素相同.这个方法很容易想到,但它的效率不能让人满意,它的复杂度是O(n)的.现在我们来看看递归在这里能不能更有效. 还是考虑上面的两个条件: 第一:这个问题是否可以分解为形式相同但规模更小的问题? 第二:如果存在这样一种分解,那么这种分解是否存在一种简单情境? 考虑条件一:我们可以这样想,如果想把问题

养成良好的编程风格--论二分查找的正确姿势

摘自:http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html 在学习算法的过程中,我们除了要了解某个算法的基本原理.实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度.在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度. 时间复杂度按优劣排差不多集中在: O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n) 到目前位置,似乎我学到的算法中,时间复杂度

二分查找的实现和应用汇总(转载)

转载地址:http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html 二分查找法的实现和应用汇总 在学习算法的过程中,我们除了要了解某个算法的基本原理.实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度.在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度. 时间复杂度按优劣排差不多集中在: O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n) 到目前位置

【转载】二分查找

[本文转自]http://www.cnblogs.com/ider/archive/2012/04/01/binary_search.html 在学习算法的过程中,我们除了要了解某个算法的基本原理.实现方式,更重要的一个环节是利用big-O理论来分析算法的复杂度.在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度. 时间复杂度按优劣排差不多集中在: O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n) 到目前位置,似乎我学到的算法中,时间

二分查找和斐波那契查找

二分查找 说明:查找的数组或列表必须是有序的,若无序,先进行排序 复杂度:时间复杂度 O(log2n),空间复杂度O(n) C++源码(递归和非递归两个版本) #include <iostream> using namespace std; int a[] = { 1, 2, 3, 4, 5, 6, 8 }; int BinarySearch1(int l, int r, int value) { int mid = (l + r) / 2; if (l == r && a[l

二分算法入门——二分查找

二分查找,无论是从名字还是理论都十分简单一个算法,其博大精深,简直恐怖.Jon Bentley:90%以上的程序员无法正确无误的写出二分查找代码. 别人不知道,反正我早上是写了好久,这个查找算法,将查找的复杂度从 o( n ) 降到了 o( logn ) ,当之无愧的的好算法,更是许多高级算法的优化策略之一. 二分查找之基本思路 虽然二分查找是一个很吊的算法,但是跟很多算法一样,需要使用的基础条件——序列有序! 先假设一个单调非增序列:1 2 3 4 5 6 ,求找到3的位置,地球人都会马上这么

Java冒泡排序和二分查找(预习)

经查阅,将资料整理如下: 一.冒泡排序 1.算法简介 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成. 这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名. 2.算法原理 (1)比较相邻的元素.如果第一个比第二个大,就交换他们两个. (2)对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. (3)针对所有的元素重复以上的