[转载]mapreduce合并小文件成sequencefile

[转载]mapreduce合并小文件成sequencefile的相关文章

Hadoop HDFS编程 API入门系列之合并小文件到HDFS(三)

不多说,直接上代码.  代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs7; import java.io.IOException;import java.net.URI;import java.net.URISyntaxException;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FSDataInputStream;import org.apa

HDFS 实际应用场景合并小文件

合并小文件,存放到HDFS上, 采取在向HDFS复制上传的过程中将小文件进行合并,效果会更好 package org.xueruan.hadoop.hdfs; import java.nio.file.Path; import sun.management.FileSystem; /* * function: merge file while copying and uploading files into HDFS */ public class PutMerge { public stati

Hadoop合并小文件的几种方法

1.Hadoop HAR 将众多小文件打包成一个大文件进行存储,并且打包后原来的文件仍然可以通过Map-Reduce进行操作,打包后的文件由索引和存储两大部分组成: 缺点: 一旦创建就不能修改,也不支持追加操作,还不支持文档压缩,当有新文件进来以后,需要重新打包. 2.SequeuesFile 适用于非文体格式,可作小文件容器,并可压缩: 3.CombineFileInputFormat 将多个文件合并成一个split作为输入,减少map输入与HDFS块的耦合: 4.Java代码实现,使用HDF

WholeFileInputFormat 和WholeFileRecordReader合并小文件

如果不希望文件被切分,例如判断文件中记录是否有序,可以让minimumSize值大于最大文件的大小,但是文件的大小不能超过blockSize,或者重写FileInputFormat方法isSplitable()返回为false.下面介绍将多个小文件合成一个大的序列文件的例子: 1)自定义完整文件输入处理类如下: Public class WholeFileInputFormat extends FileInputFormat<NullWritable, ByteWritable> { @ove

mapreduce 关于小文件导致任务缓慢的问题

小文件导致任务执行缓慢的原因: 1.很容易想到的是map task 任务启动太多,而每个文件的实际输入量很小,所以导致了任务缓慢 这个可以通过 CombineTextInputFormat,解决,主要需要设置 mapreduce.input.fileinputformat.split.maxsize(单位byte) 2.其次是set input 文件太多,需要一个一个set ,所以花费的时间很多,导致任务启动就很慢了 这个只能提前merge好小文件,组成大文件,可能还有更好的办法,需要再研究

hive小文件合并设置参数

Hive的后端存储是HDFS,它对大文件的处理是非常高效的,如果合理配置文件系统的块大小,NameNode可以支持很大的数据量.但是在数据仓库中,越是上层的表其汇总程度就越高,数据量也就越小.而且这些表通常会按日期进行分区,随着时间的推移,HDFS的文件数目就会逐渐增加. 小文件带来的问题 关于这个问题的阐述可以读一读Cloudera的这篇文章.简单来说,HDFS的文件元信息,包括位置.大小.分块信息等,都是保存在NameNode的内存中的.每个对象大约占用150个字节,因此一千万个文件及分块就

hive压缩之小文件合并

Hive压缩之二 小文件合并 调研背景 当Hive输入由很多个小文件组成,由于每个小文件都会启动一个map任务,如果文件过小,以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费,甚至OOM.为此,当我们启动一个任务,发现输入数据量小但任务数量多时,需要注意在Map前端进行输入合并.当然,在我们向一个表写数据时,也需要注意输出文件大小. 输入合并 合并输入小文件,减少map数? 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小. 举例: a)

Hive merge(小文件合并)

当Hive的输入由很多个小文件组成时,如果不涉及文件合并的话,那么每个小文件都会启动一个map task. 如果文件过小,以至于map任务启动和初始化的时间大于逻辑处理的时间,会造成资源浪费,甚至发生OutOfMemoryError错误. 因此,当我们启动一个任务时,如果发现输入数据量小但任务数量多时,需要注意在Map前端进行输入小文件合并操作. 同理,向一个表写数据时,注意观察reduce数量,注意输出文件大小. 1. Map输入小文件合并 #每个Map处理的最大输入文件大小(256MB) s

HDFS小文件合并问题的优化:copyMerge的改进

1.问题分析 用fsck命令统计 查看HDFS上在某一天日志的大小,分块情况以及平均的块大小,即 [[email protected] jar]$ hadoop fsck /wcc/da/kafka/report/2015-01-11 DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it. 15/01/13 18:57:23 WARN ut