浅谈Tarjan算法及思想

在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components)。

Tarjan算法是基于对图深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。Tarjan算法有点类似于基于后序的深度遍历搜索和并查集的组合,充分利用回溯来解决问题。

需要注意到Tarjan算法求一个图中的极大强联通子图,强连通分量(strongly connected components)。

比如说,在下例图中中,{1,3,4}与{1,2,3,4}都是符合条件的联通子图,但是{1,3,4}不是强联通分量,因为它不是极大图

所谓极大图,就是子图中包含元素最多的符合所有条件的子图

tarjan算法的具体实现:
如下图中,强连通分量有:{1,2,3,4},{5},{6}

{资料来自于http://blog.csdn.net/jeryjeryjery/article/details/52829142?locationNum=4&fps=1}

可以看到Tarjan算法是依靠一个数据结构——栈来实现的,具体实现的方式上面已经非常清楚了。

下面欣赏一下某dalao的神奇blog,也是比较好的,有错的地方改掉了:

tarjan算法,一个关于 图的联通性的神奇算法。基于DFS(迪法师)算法,深度优先搜索一张有向图。!注意!是有向图。根据树,堆栈,打标记等种种神(che)奇(dan)方法来完成剖析一个图的工作。而图的联通性,就是任督二脉通不通。。的问题。
了解tarjan算法之前你需要知道:
强连通,强连通图,强连通分量,解答树(解答树只是一种形式。了解即可)
不知道怎么办!!!

神奇海螺~:嘟噜噜~!
强连通(strongly connected): 在一个有向图G里,设两个点 a b 发现,由a有一条路可以走到b,由b又有一条路可以走到a,我们就叫这两个顶点(a,b)强连通。

强连通图: 如果 在一个有向图G中,每两个点都强连通,我们就叫这个图,强连通图。

强连通分量strongly connected components):在一个有向图G中,有一个子图,这个子图每2个点都满足强连通,我们就叫这个子图叫做 强连通分量 [分量::把一个向量分解成几个方向的向量的和,那些方向上的向量就叫做该向量(未分解前的向量)的分量]
举个简单的栗子:

比如说这个图,在这个图中呢,点1与点2互相都有路径到达对方,所以它们强连通.

而在这个有向图中,点1 2 3组成的这个子图,是整个有向图中的强连通分量。

解答树:就是一个可以来表达出递归枚举的方式的树(图),其实也可以说是递归图。。反正都是一个作用,一个展示从“什么都没有做”开始到“所有结求出来”逐步完成的过程。“过程!”

神奇海螺结束!!!

tarjan算法,之所以用DFS就是因为它将每一个强连通分量作为搜索树上的一个子树。而这个图,就是一个完整的搜索树。
为了使这颗搜索树在遇到强连通分量的节点的时候能顺利进行。每个点都有两个参数。
1,DFN[]作为这个点搜索的次序编号(时间戳),简单来说就是 第几个被搜索到的。%每个点的时间戳都不一样%。
2,LOW[]作为每个点在这颗树中的,最小的子树的根,每次保证最小,like它的父亲结点的时间戳这种感觉。如果它自己的LOW[]最小,那这个点就应该从新分配,变成这个强连通分量子树的根节点。
ps:每次找到一个新点,这个点LOW[]=DFN[]。

而为了存储整个强连通分量,这里挑选的容器是,堆栈。每次一个新节点出现,就进站,如果这个点有 出度 就继续往下找。直到找到底,每次返回上来都看一看子节点与这个节点的LOW值,谁小就取谁,保证最小的子树根。如果找到DFN[]==LOW[]就说明这个节点是这个强连通分量的根节点(毕竟这个LOW[]值是这个强连通分量里最小的。)最后找到强连通分量的节点后,就将这个栈里,比此节点后进来的节点全部出栈,它们就组成一个全新的强连通分量。

先来一段伪代码压压惊:

tarjan(u){
  DFN[u]=Low[u]=++Index // 为节点u设定次序编号和Low初值
  Stack.push(u)   // 将节点u压入栈中
  for each (u, v) in E // 枚举每一条边
    if (v is not visted) // 如果节点v未被访问过
        tarjan(v) // 继续向下找
        Low[u] = min(Low[u], Low[v])
    else if (v in S) // 如果节点u还在栈内
        Low[u] = min(Low[u], DFN[v])
  if (DFN[u] == Low[u]) // 如果节点u是强连通分量的根
  repeat v = S.pop  // 将v退栈,为该强连通分量中一个顶点
  print v
  until (u== v)

}

首先来一张有向图。网上到处都是这个图。我们就一点一点来模拟整个算法。

从1进入 DFN[1]=LOW[1]= ++index ----1
入栈 1
由1进入2 DFN[2]=LOW[2]= ++index ----2
入栈 1 2
之后由2进入3 DFN[3]=LOW[3]= ++index ----3
入栈 1 2 3
之后由3进入 6 DFN[6]=LOW[6]=++index ----4
入栈 1 2 3 6

之后发现 嗯? 6无出度,之后判断 DFN[6]==LOW[6]
说明6是个强连通分量的根节点:6及6以后的点 出栈。
栈: 1 2 3 
之后退回 节点3 Low[3] = min(Low[3], Low[6]) LOW[3]还是 3
节点3 也没有再能延伸的边了,判断 DFN[3]==LOW[3]
说明3是个强连通分量的根节点:3及3以后的点 出栈。
栈: 1 2 
之后退回 节点2 嗯?!往下到节点5
DFN[5]=LOW[5]= ++index -----5
入栈 1 2 5

ps:你会发现在有向图旁边的那个丑的(划掉)搜索树 用红线剪掉的子树,那个就是强连通分量子树。每次找到一个。直接。一剪子下去。半个子树就没有了。。

结点5 往下找,发现节点6 DFN[6]有值,被访问过。就不管它。
继续 5往下找,找到了节点1 他爸爸的爸爸。。DFN[1]被访问过并且还在栈中,说明1还在这个强连通分量中,值得发现。 Low[5] = min(Low[5], DFN[1]) 
确定关系,在这棵强连通分量树中,5节点要比1节点出现的晚。所以5是1的子节点。so
LOW[5]= 1

由5继续回到2 Low[2] = min(Low[2], Low[5])
LOW[2]=1;
由2继续回到1 判断 Low[1] = min(Low[1], Low[2]) 
LOW[1]还是 1
1还有边没有走过。发现节点4,访问节点4
DFN[4]=LOW[4]=++index ----6
入栈 1 2 5 4 
由节点4,走到5,发现5被访问过了,5还在栈里,
Low[4] = min(Low[4], DFN[5]) LOW[4]=5
说明4是5的一个子节点。

由4回到1.

回到1,判断 Low[1] = min(Low[1], Low[4])
LOW[1]还是 1 。

判断 LOW[1] == DFN[1] 
诶?!相等了    说明以1为根节点的强连通分量已经找完了。
将栈中1以及1之后进栈的所有点,都出栈。
栈 :(鬼都没有了)

这个时候就完了吗?!

你以为就完了吗?!

然而并没有完,万一你只走了一遍tarjan整个图没有找完怎么办呢?!

所以。tarjan的调用最好在循环里解决。

like    如果这个点没有被访问过,那么就从这个点开始tarjan一遍。

因为这样好让每个点都被访问到。

来一道裸代码。

输入:一个图有向图。

输出:它每个强连通分量。

这个图就是刚才讲的那个图。一模一样。

input#1:

6 8
1 2
2 3
3 6
5 6
2 5
5 1
4 5
1 4

output#1:

strongly connected components 1:6
strongly connected components 2:3
strongly connected components 3:2 1 5 4

代码 pascal:

program Tarjan;uses math;
const maxn=100000;
type rec=record
 en,pre,w:longint;
end;
var st,vis,use:array[-maxn..maxn]of boolean;
    s,dfn,low,head:array[1..maxn]of longint;
    tot,cc,i,u,v,w,time,top,n,m:longint;
    a:array[1..maxn]of rec;
procedure adde(u,v,w:longint);
begin
 inc(tot);
 a[tot].en:=v;
 a[tot].pre:=head[u];
 head[u]:=tot;
end;
procedure tarjan(u:longint);
var p,v,tt:longint;
begin
 inc(time); dfn[u]:=time; low[u]:=time;
 inc(top); s[top]:=u;
 st[u]:=true;
 p:=head[u];
 while p>0 do begin
  v:=a[p].en;
  if not use[v] then begin
   use[v]:=true;
   tarjan(v);
   low[u]:=min(low[u],low[v]);
  end
  else if (dfn[v]<low[u])and(st[v]) then low[u]:=dfn[v];
  p:=a[p].pre;
 end;
 if low[u]=dfn[u] then begin
  if top>0 then begin
  inc(cc);
  write(‘strongly connected components ‘,cc,‘:‘);
  while tt<>u do begin
   tt:=s[top];  write(tt,‘ ‘);
   st[tt]:=false;
   dec(top);
  end;
  writeln;
  end;
 end;
end;
begin
 readln(n,m);
 for i:=1 to m do begin
  readln(u,v);
  adde(u,v,w);
 end;
 fillchar(vis,sizeof(vis),false);
 fillchar(st,sizeof(st),false);
 fillchar(use,sizeof(use),false);
 time:=0;
 tarjan(1);
end.
时间: 2024-10-08 08:09:35

浅谈Tarjan算法及思想的相关文章

浅谈人的精神思想层面与本性

今晚和一朋友说起自己思想上很积极,但是行为却总是迟迟不肯迈步.她说这是人的精神层面和本性,仔细想想也确实是如此. 大部分人在内心或潜意识中对未来都是充满信心,永远都保持相信自己的心态:人在自己的思想中是最强大的,想怎么想就怎么想,因此,下一步都会开始做出计划,自己也认为自己的计划完美无缺.定完计划后,真的的困难就出来了,那就是很难按照自己的计划行事,总是有各种各样的借口来慰藉自己那虚伪而又脆弱的心,努力让自己从虚度的梦靥中挣扎出来,脱离这个计划后,又开始找借口摆脱下一个计划,仿佛此时计划不如当初

hdu1875浅谈prim算法的朴素实现

阅读原题 题目大意 给你几个(<=100)小岛的坐标,然后你把所有的岛都修上桥连接起来,求最小花费,还有个附加的限制:只有岛之间的距离大于等于10,或小于等于1000时才能修桥. 大概是因为十米以内不用建桥,千米以上无法建桥.哈哈,说着玩的. 很明显这是一道MST(最小生成树)的题目,貌似也有人用并查集AC过. 最小生成树算法 概述 最小生成树的常用算法有两个kruskal和prim算法.两者都是不停地执行归并操作,然而一言以蔽之,两者的不同之处在于:kruskal----归并边:prim---

浅谈分词算法(2)基于词典的分词方法

[TOC] 前言 在浅谈分词算法(1)分词中的基本问题中我们探讨了分词中的基本问题,也提到了基于词典的分词方法.基于词典的分词方法是一种比较传统的方式,这类分词方法有很多,如:正向最大匹配(forward maximum matching method, FMM).逆向最大匹配(backward maximum matching method,BMM).双向扫描法.逐词遍历法.N-最短路径方法以及基于词的n-gram语法模型的分词方法等等.对于这类方法,词典的整理选择在其中占到了很重要的作用,本

浅谈分词算法(1)分词中的基本问题

[TOC] 前言 分词或说切词是自然语言处理中一个经典且基础的问题,在平时的工作中也反复的接触到分词问题,用到了不同的模型,不同的方法应用在各个领域中,所以想对分词问题做一个系统的梳理.大多数分词问题主要是针对类似汉语.韩语.日语等,词语之间并没有天然的分割,而像英语等,句子中是带有天然的分割的.但是英语也会涉及到分词问题,比如实体识别.词性标注等内容.而本系列文章更多的是讨论汉语中的分词问题,首先我们从分词问题的基本出发,之后从传统的词典分词到将分词转为序列标注问题的分词,以及最新的结合深度学

浅谈欧洲算法——模拟退火

初听说退火这个名词感觉就很(zhuang)帅(A__CDEFG...) 直到学了退火之后,我才发现: 退火不只是帅,而且非常万能 甚至比 D (大) F (法) S (师)还要万能 简直就是骗(de)分神器啊 简介 作为一个计算机算法,它竟然在百度上有物理词条! 当时我看了就懵了,你说计算机一个算法,跟冶炼金属有什么关系啊? 后来我看了算法的词条... 是不是更懵了... 方便大家理解(变得更懵),我搬了百度上的定义: Simulate Anneal Arithmetic (SAA,模拟退火算法

浅谈KMP算法及其next[]数组

KMP算法是众多优秀的模式串匹配算法中较早诞生的一个,也是相对最为人所知的一个. 算法实现简单,运行效率高,时间复杂度为O(n+m)(n和m分别为目标串和模式串的长度),比蛮力算法的O(nm)快了许多. 理解KMP算法,关键是理解其中的精髓——next[]数组. (统一起见,下文将目标字符串记作obj,将模式字符串记作pattern,这与后面的程序代码是一致的) 我们给一个字符串S定义一个next值,记作next(S),next(S)=n表示: (1)S的前n个字符构成的前缀,和后n个字符的后缀

浅谈Tarjan

Tarjan 算法一种由Robert Tarjan提出的求解有向图强连通分量的算法,它能做到线性时间的复杂度.(每个点只经过一次) 说到Tarjan,我们首先要输破的肯定是有向图,因为无向图没有这么一个东西 这句要从Tarjan算法的定义讲起了 我们定义: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为强连通分量(strongly connected components).

浅谈Manacher算法与扩展KMP之间的联系

首先,在谈到Manacher算法之前,我们先来看一个小问题:给定一个字符串S,求该字符串的最长回文子串的长度.对于该问题的求解,网上解法颇多,时间复杂度也不尽相同,这里列述几种常见的解法. 解法一 通过枚举S的子串,然后判断该子串是否为回文,由于S的子串个数大约为,加上每次判断需要的时间,所以总的时间复杂度为,空间复杂度为. bool check(string &S, int left, int right) { while (left < right && S[left]

浅谈分支限界算法

1. 定义: 分支限界算法是按照广度优先的方式对解空间树(状态空间树)进行搜索,从而求得最优解的算法.在搜索的过程中,采用限界函数(bound function)估算所有子节点的目标函数的可能取值,从而选择使目标函数取极值(极大值或者极小值)的节点作为扩展结点(如果限界值没有超过目前的最优解,则剪枝)进行下一步搜索(重复 BFS -> 计算所有子节点限界 -> 选择最优子节点作为扩展结点的过程),从而不断调整搜索的方向,尽快找到问题的最优解. (ps:回溯算法求出满足约束的所有可行解,分支限界