给N个矩形的端点坐标,求矩形覆盖面积和。
原理很简单,从左到右扫描,线段树记录的是纵向覆盖的长度。区间更新。因为坐标是实数而且很大,所以需要离散化。
WA+RE+CE+MLE+。。。一共错了二十多次。用了最蠢的办法,最后发现错在初始化的时候,构造函数参数我写成了int。。蠢哭。。。
AC代码:
#include <bits/stdc++.h> #define clr(x,c) memset(x,c,sizeof(x)) using namespace std; const int N = 20005; struct ScanLine { double x; double upY, downY; int flag; // 入边1 出边-1 bool operator<(const ScanLine a) const { return x < a.x; } ScanLine() {} ScanLine(double x, double y1, double y2, int f) : x(x), upY(y1), downY(y2), flag(f) {} } line[N]; double tr[N]; int cover[N]; double yy[N]; #define lson (o<<1) #define rson (o<<1|1) #define mid (l+r>>1) int yl, yr, v; void pushup(int o, int l, int r) { if (cover[o]) tr[o] = yy[r] - yy[l]; else if (l + 1 == r) tr[o] = 0; // 叶子 else tr[o] = tr[lson] + tr[rson]; } void update(int o, int l, int r) { if (yl > r || yr < l) return ; if (yl <= l && yr >= r) { cover[o] += v; pushup(o, l, r); return ; } if (l + 1 == r) return ; // 不包含的叶子节点要退出,否则死循环T^T if (yl <= mid) update(lson, l, mid); if (yr > mid) update(rson, mid, r); // 注意这里不是mid+1 因为mid~mid+1一段的距离也要算 pushup(o, l ,r); } int main() { int n; int cas = 0; while (~scanf("%d", &n) && n) { int cnt = 0; double x1, y1, x2, y2; for (int i = 0; i < n; ++i) { scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); line[++cnt] = ScanLine(x1, y2, y1, 1); yy[cnt] = y1; line[++cnt] = ScanLine(x2, y2, y1, -1); yy[cnt] = y2; } sort(yy + 1, yy + cnt + 1); sort(line + 1, line + cnt + 1); int len = unique(yy + 1, yy + cnt + 1) - yy - 1; clr(cover, 0); clr(tr, 0); double ans = 0; for (int i = 1; i <= cnt; ++i) { ans += tr[1] * (line[i].x - line[i - 1].x); yl = lower_bound(yy+1, yy + len + 1, line[i].downY) - yy; yr = lower_bound(yy+1, yy + len + 1, line[i].upY) - yy; v = line[i].flag; update(1, 1, len); } printf("Test case #%d\nTotal explored area: %.2f\n\n", ++cas, ans); } return 0; }
还有一种方法,比较好理解,和平时的线段树比较像,就是对于每个区间求[l, r-1],算的时候右边加一,这样递归的时候就不用考虑叶子节点了。
#include <bits/stdc++.h> #define clr(x,c) memset(x,c,sizeof(x)) using namespace std; const int N = 20005; struct ScanLine { double x; double upY, downY; int flag; // 入边1 出边-1 bool operator<(const ScanLine a) const { return x < a.x; } ScanLine() {} ScanLine(double x, double y1, double y2, int f) : x(x), upY(y1), downY(y2), flag(f) {} } line[N]; double tr[N]; int cover[N]; double yy[N]; #define lson (o<<1) #define rson (o<<1|1) #define mid ((l+r)>>1) int yl, yr, v; void pushup(int o, int l, int r) { if (cover[o] > 0) tr[o] = yy[r+1] - yy[l]; else if (l == r) tr[o] = 0; else tr[o] = tr[lson] + tr[rson]; } void update(int o, int l, int r) { if (yl > r || yr < l) return ; if (yl <= l && yr >= r) { cover[o] += v; pushup(o, l, r); return ; } if (yl <= mid) update(lson, l, mid); if (yr > mid) update(rson, mid + 1, r); pushup(o, l ,r); } int main() { int n; int cas = 0; while (~scanf("%d", &n) && n) { int cnt = 0; double x1, y1, x2, y2; for (int i = 0; i < n; ++i) { scanf("%lf%lf%lf%lf", &x1, &y1, &x2, &y2); line[++cnt] = ScanLine(x1, y2, y1, 1); yy[cnt] = y1; line[++cnt] = ScanLine(x2, y2, y1, -1); yy[cnt] = y2; } sort(yy + 1, yy + cnt + 1); sort(line + 1, line + cnt + 1); int len = unique(yy + 1, yy + cnt + 1) - yy - 1; clr(cover, 0); clr(tr, 0); double ans = 0; for (int i = 1; i <= cnt; ++i) { ans += tr[1] * (line[i].x - line[i - 1].x); yl = lower_bound(yy+1, yy+len+1, line[i].downY) - yy; yr = lower_bound(yy+1, yy+len+1, line[i].upY) - yy - 1; v = line[i].flag; update(1, 1, len-1); } printf("Test case #%d\nTotal explored area: %.2f\n\n", ++cas, ans); } return 0; }
时间: 2024-11-09 15:40:31