bzoj3505 / P3166 [CQOI2014]数三角形

P3166 [CQOI2014]数三角形

前置知识:某两个点$(x_{1},,y_{1}),(x_{2},y_{2})\quad (x_{1}<x_{2},y_{1}<y_{2})$所连成的线段穿过整点的个数为$gcd(x_{2}-x_{1},y_{2}-y_{1})-1$

“注意三角形的三点不能共线。”

暗示你可以处理出总方案再减去三点共线的方案。

显然,总方案就是在$(n+1)*(m+1)$个点中任选$3$个。于是$tot=C((n+1)*(m+1),3)$

现在我们要算出三点共线的方案

对于直线上的三点共线,显然$tot1=n*C(m,3)+m*C(n,3)$

对于斜线上的三点共线,我们可以根据前置知识↑↑枚举。

然鹅暴力枚举复杂度是达到$O(n^{2}m^{2})$的

所以我们需要转化

注意到其实我们可以只枚举$l=x_{2}-x_{1},r=y_{2}-y_{1}$,相当于把这两个数据看做一个矩形的长和宽。

蓝后我们要算出整个大矩形中有几个这样的小矩形:$(n-l+1)*(m-r+1)$

每个矩形中包含$2$条对角线,所以$tot2*=2$

所以斜线上的三点共线$tot2=\sum_{i=1}^{n}\sum_{j=1}^{m}(gcd(i,j)-1)*(n-i+1)*(m-j+1)$

代码中为了方便事先把$n,m$都$+1$

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #define re register
 5 using namespace std;
 6 typedef long long ll;
 7 ll m,n,ans;
 8 int gcd(int a,int b){return b?gcd(b,a%b):a;}
 9 int main(){
10     scanf("%lld%lld",&n,&m);++n;++m;
11     ll tmp=n*m;
12     ans=tmp*(tmp-1)*(tmp-2)/6;
13     ans-=n*m*(m-1)*(m-2)/6;
14     ans-=m*n*(n-1)*(n-2)/6;//减去横向和纵向的三点共线
15     for(int i=1;i<n;++i)
16         for(int j=1;j<m;++j)
17             ans-=1ll*(gcd(i,j)-1)*(n-i)*(m-j)*2;
18     printf("%lld",ans);
19     return 0;
20     return 0;
21 }

原文地址:https://www.cnblogs.com/kafuuchino/p/9906533.html

时间: 2024-10-21 22:29:38

bzoj3505 / P3166 [CQOI2014]数三角形的相关文章

【BZOJ3505】[Cqoi2014]数三角形 组合数

[BZOJ3505][Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Input 2 2 Sample Output 76 数据范围 1<=m,n<=1000 题解:显然要用补集法,我们只需要求出三点共线的方案数即可.方法是先枚举两端的点所形成的向

BZOJ3505 &amp; 洛谷P3166 [Cqoi2014]数三角形 【数学、数论】

题目 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出一个正整数,为所求三角形数量. 输入样例 2 2 输出样例 76 数据范围 1<=m,n<=1000 题解 比较容易想到的是用所有方案\(C_{n*m}^{3}\)减去共线的方案 水平和竖直共线很容易算,为\(n * C_{m}^{3}\)和\(m * C_{n}^{3}\) 主要是倾斜的线 我们

【bzoj3505】 Cqoi2014—数三角形

http://www.lydsy.com/JudgeOnline/problem.php?id=3505 (题目链接) 题意 给定一个n*m的网格,请计算三点都在格点上的三角形共有多少个. Solution $${ans=平面中选三个点的方案数-三点共线的方案数}$$ $${ans=C_{(n+1)*(m+1)}^{3}-(n+1)*C_{m+1}^{3}-(m+1)*C_{n+1}^{3}-斜的三点共线的方案数}$$ 斜的三点共线方案数不会求..左转题解:http://blog.csdn.ne

【bzoj3505】[Cqoi2014]数三角形 容斥原理

题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. 输入 输入一行,包含两个空格分隔的正整数m和n. 输出 输出一个正整数,为所求三角形数量. 样例输入 2 2 样例输出 76 题解 容斥原理 三角形数目=选出三个点的方案数-三点共线的方案数. 选出三个点的方案数显然为$C_{(n+1)(m+1)}^3$. 三线共线的方案数,考虑枚举两端点,统计出一个矩形内的方案数,再算出总体方案数.其中点坐标的gcd-1为中间

P3166 [CQOI2014]数三角形

题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入格式 输入一行,包含两个空格分隔的正整数m和n. 输出格式 输出一个正整数,为所求三角形数量. 输入输出样例 输入 #1 2 2 输出 #1 76 说明/提示 数据范围 bzoj上是1<=m,n<=1000 思路 每个顶点都在格点上的三角形,有且只有一个可以被它完全覆盖的网格.所以只要求出原矩形当中所有子矩形的完全覆盖三角形的数量,就可以不重不漏地找出顶点都

洛谷P3166 [CQOI2014]数三角形

题目描述 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. 输入输出格式 输入格式: 输入一行,包含两个空格分隔的正整数m和n. 输出格式: 输出一个正整数,为所求三角形数量. 输入输出样例 输入样例#1: 2 2 输出样例#1: 76 数据范围 1 ---------------------------------------------------------------------------------- 这道题呢

Luogu P3166 [CQOI2014]数三角形 组合数学

好题鸭.. 不好直接求三角形个数,那就用全集-补集,转化为求三点共线的数量. 具体求法是求出水平共线数量与竖直共线数量和斜线共线数量. 用排列组合的知识可知为水平和竖直的为$C_n^3$?与$C_m^3?$. 求斜线三点共线:显然,对于点$(a,b) (x,y)$连成的线段$(其中a>x,b>y)$,在它们中间有$gcd(a-x,b-y)-1$个整点,因此基本的思路就是枚举两个点,然后第3个点就是$gcd(a-x,b-y)-1$种可能了.我们又发现,这些线段是可以平移和对称(/和\)的,于是并

BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不合法方案cnt比较麻烦. 枚举对角线(左下-右上), 即(0, 0)-(x, y), 我们发现这种情况有(n-y)*(m-x)*2(算上左上-右下的)种, 然后中间有gcd(x, y)-1个点(不合法), 乘起来就好了. ---------------------------------------

3505: [Cqoi2014]数三角形

3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1324  Solved: 807[Submit][Status][Discuss] Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出一个正整数,为所求三角形数量. Sample Inp