makefile文件详解

1.make是如何工作的

在默认的方式下,也就是只输入make命令。那么,

(1)make会在当前目录下找名字叫“Makefile”或“makefile”的文件。

默认的情况下,make命令会在当前目录下按顺序找寻文件名为“GNUmakefile”、“makefile”、“Makefile”的文件,找到了解释这个文件。在这三个文件名中,最好使用“Makefile”这个文件名,因为这个文件名第一个字符为大写,这样有一种显目的感觉。最好不要用“GNUmakefile”,这个文件是GNU的make识别的。有另外一些make只对全小写的“makefile”文件名敏感,但是基本上来说,大多数的make都支持“makefile”和“Makefile”这两种默认文件名。当然,可以使用别的文件名来书写Makefile,比如:“Make.Linux”,“Make.Solaris”,“Make.AIX”等,如果要指定特定的Makefile,可以使用make的“-f”和“--file”参数,如:make
-f Make.Linux或make --file Make.AIX。

(2)如果找到,它会找文件中的第一个目标文件(target),并把这个文件作为最终的目标文件。

(3)如果第一个目标文件文件不存在,或是第一个目标文件所依赖的后面的 .o 文件的文件修改时间要比第一个目标文件新,那么,他就会执行后面所定义的命令来生成这个文件。

(4)如果第一个目标文件所依赖的.o文件也不存在,那么make会在当前文件中找目标为.o文件的依赖性,如果找到则再根据那一个规则生成.o文件。(这有点像一个堆栈的过程)

(5)当然,C文件和H文件是存在的,于是make会生成 .o 文件,然后再用 .o 文件生命make的终极任务,也就是执行第一个目标文件了。

这就是整个make的依赖性,make会一层又一层地去找文件的依赖关系,直到最终编译出第一个目标文件。在找寻的过程中,如果出现错误,比如最后被依赖的文件找不到,那么make就会直接退出,并报错,而对于所定义的命令的错误,或是编译不成功,make根本不理。make只管文件的依赖性,即,如果在找了依赖关系之后,冒号后面的文件还是不在,那么就不工作了。

命令——“make clean”,以此来清除所有的目标文件,以便重编译。

2.什么是makefile文件

在 Linux(unix )环境下使用GNU 的make工具能够比较容易的构建一个属于你自己的工程,整个工程的编译只需要一个命令就可以完成编译、连接以至于最后的执行。不过这需要我们投入一些时间去完成一个或者多个称之为Makefile 文件的编写。

make是一个命令工具,它解释Makefile 中的指令(应该说是规则)。在Makefile文件中描述了整个工程所有文件的编译顺序、编译规则。Makefile 有自己的书写格式、关键字、函数。像C 语言有自己的格式、关键字和函数一样。而且在Makefile 中可以使用系统shell所提供的任何命令来完成想要的工作。Makefile(在其它的系统上可能是另外的文件名)在绝大多数的IDE 开发环境中都在使用,已经成为一种工程的编译方法。

3.makefile文件的作用

makefile关系到了整个工程的编译规则。一个工程中的源文件不计数,其按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能操作,因为makefile就像一个Shell脚本一样,其中也可以执行操作系统的命令。

makefile带来的好处就是——“自动化编译”,一旦写好,只需要一个make命令,整个工程完全自动编译,极大的提高了软件开发的效率。

4.makefile文件的编写

示例工程有8个C文件,和3个头文件,我们要写一个Makefile来告诉make命令如何编译和链接这几个文件。我们的规则是:

1)如果这个工程没有编译过,那么我们的所有C文件都要编译并被链接。

2)如果这个工程的某几个C文件被修改,那么我们只编译被修改的C文件,并链接目标程序。

3)如果这个工程的头文件被改变了,那么我们需要编译引用了这几个头文件的C文件,并链接目标程序。

写好Makefile文件后,然后在该目录下直接输入命令“make”就可以生成执行文件——第一个目标文件(target)。如果要删除执行文件和所有的中间目标文件,那么,只要简单地执行一下“make clean”就可以了。

4.1  MakeFile里有什么

Makefile里主要包含了五个东西:显式规则、隐晦规则、变量定义、文件指示和注释。

(1)显式规则。显式规则说明了,如何生成一个或多的的目标文件。这是由Makefile的书写者明显指出,要生成的文件,文件的依赖文件,生成的命令。

(2)隐晦规则。由于make有自动推导的功能,所以隐晦的规则可以让我们比较粗糙地简略地书写Makefile,这是由make所支持的。

(3)变量的定义。在Makefile中要定义一系列的变量,变量一般都是字符串,这个有点像C语言中的宏,当Makefile被执行时,其中的变量都会被扩展到相应的引用位置上。

(4)文件指示。其包括了三个部分,一个是在一个Makefile中引用另一个Makefile,就像C语言中的include一样;另一个是指根据某些情况指定Makefile中的有效部分,就像C语言中的预编译#if一样;还有就是定义一个多行的命令。

(5)注释。Makefile中有行注释,和UNIX的Shell脚本一样,其注释是用“#”字符,这个就像C/C++中的“//”一样。如果要在Makefile中使用“#”字符,可以用反斜框进行转义,如:“/#”。

最后值得一提的是,在Makefile中的命令,必须要以[Tab]键开始。

4.2  MakeFile语法(规则):

target  :prerequisites

command

目标:依赖

执行指令 ...

target:是一个目标文件,可以是Object File,也可以是执行文件。还可以是一个标签(Label)。文件名以空格分开,可以使用通配符。一般来说,目标基本上是一个文件,但也有可能是多个文件。

prerequisites:要生成那个target所需要的文件或是目标。

command:是make需要执行的命令。(任意的Shell命令)。在定义好依赖关系后,后续的那一行定义了如何生成目标文件的操作系统命令。command是命令行,如果其不与“target:rerequisites”在一行,那么,必须以[Tab键]开头,如果和prerequisites在一行,那么可以用分号(;)做为分隔。如果命令太长,可以使用反斜框(‘/’)作为换行符。make对一行有多少个字符没有限制。规则告诉make两件事,文件的依赖关系和如何成成目标文件。

上述形式的格式代表两层含义:

(a)要想得到target,需要执行命令command。

(b) target依赖prerequisites,当prerequisites中至少有一个文件比target文件新时,command才被执行。

在Makefile中,规则的顺序很重要。因为Makefile中只应该有一个最终目标,其它的目标都是被这个目标所连带出来的,所以一定要让make知道最终目标是什么。一般来说,定义在Makefile中的目标可能会有很多,但是第一条规则中的目标将被确立为最终的目标。如果第一条规则中的目标有很多个,那么,第一个目标会成为最终的目标。make所完成的也就是这个目标。

规则举例:

foo.o : foo.c defs.h       # foo模块

cc -c -g foo.c

foo.o是我们的目标,foo.c和defs.h是目标所依赖的源文件,而只有一个命令“cc -c -g foo.c”(以Tab键开头)。这个规则告诉我们两件事:

(1)文件的依赖关系,foo.o依赖于foo.c和defs.h的文件,如果foo.c和defs.h的文件日期要比foo.o文件日期要新,或是foo.o不存在,那么依赖关系发生。

(2)如何生成(或更新)foo.o文件。也就是那个cc命令,其说明了如何生成foo.o这个文件。(当然foo.c文件include了defs.h文件)。

一般来说,make会以UNIX的标准Shell,也就是/bin/sh来执行命令。

在规则中使用通配符:

如果想定义一系列比较类似的文件,很自然地想起使用通配符。make支持三各通配符:“*”,“?”和“[...]”。这是和Unix的B-Shell是相同的。

波浪号(“~”)字符在文件名中也有比较特殊的用途。如果是“~/test”,这就表示当前用户的$HOME目录下的test目录。而“~hchen/test”则表示用户hchen的宿主目录下的test目录。(这些都是Unix下的小知识,make也支持)而在Windows或是MS-DOS下,用户没有宿主目录,那么波浪号所指的目录则根据环境变量“HOME”而定。

通配符代替了一系列的文件,如“*.c”表示所以后缀为c的文件。如果文件名中有通配符,如:“*”,那么可以用转义字符“/”,如“/*”来表示真实的“*”字符,而不是任意长度的字符串。

看几个例子:

clean:

rm -f *.o

这是操作系统Shell所支持的通配符,这是在命令中的通配符。

print: *.c

lpr -p $?

touch print

上面这个例子说明了通配符也可以在规则中,目标print依赖于所有的[.c]文件。其中的“$?”是一个自动化变量。

objects = *.o

上面这个例子,表示了,通配符同样可以用在变量中。并不是说[*.o]会展开,objects的值就是“*.o”。Makefile中的变量其实就是C/C++中的宏。如果你要让通配符在变量中展开,也就是让objects的值是所有[.o]的文件名的集合,那么可以这样:

objects := $(wildcard *.o)

这种用法由关键字“wildcard”指出,关于Makefile的关键字,将在后面讨论。

4.3  makefile中使用变量

为了makefile的易维护,在makefile中可以使用变量。makefile的变量也就是一个字符串,理解成C语言中的宏。

例如,在makefile一开始就这样定义:

objects = main.o kbd.o command.o display.o /

insert.o search.o files.o utils.o

于是,就可以很方便地在makefile中以“$(objects)”的方式来使用这个变量了,于是之前的与改良版的makefile如下:

原始:

edit : main.o kbd.o command.o display.o /

insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o /

insert.o search.o files.o utils.o

改良版:

objects = main.o kbd.o command.o display.o /

insert.o search.o files.o utils.o

edit : $(objects)

cc -o edit $(objects)

如果有新的 .o 文件加入,我们只需简单地修改一下 objects 变量就可以了。

4.4  引用其它的Makefile

在Makefile使用include关键字可以把别的Makefile包含进来,这很像C语言的#include,被包含的文件会原模原样的放在当前文件的包含位置。include的语法是:

include <filename>

filename可以是当前操作系统Shell的文件模式(可以保含路径和通配符);

在include前面可以有一些空字符,但是绝不能是[Tab]键开始。include和<filename>可以用一个或多个空格隔开。举个例子,有这样几个Makefile:a.mk、b.mk、c.mk,还有一个文件叫foo.make,以及一个变量$(bar),其包含了e.mk和f.mk,那么,下面的语句:

include foo.make *.mk $(bar)

等价于:

include foo.make a.mk b.mk c.mk e.mk f.mk

make命令开始时,会找寻include所指出的其它Makefile,并把其内容安置在当前的位置。就好像C/C++的#include指令一样。如果文件都没有指定绝对路径或是相对路径的话,make会在当前目录下首先寻找,如果当前目录下没有找到,那么,make还会在下面的几个目录下找:

(1)如果make执行时,有“-I”或“--include-dir”参数,那么make就会在这个参数所指定的目录下去寻找。

(2)如果目录<prefix>/include(一般是:/usr/local/bin或/usr/include)存在的话,make也会去找。

如果有文件没有找到的话,make会生成一条警告信息,但不会马上出现致命错误。它会继续载入其它的文件,一旦完成makefile的读取,make会再重试这些没有找到,或是不能读取的文件,如果还是不行,make才会出现一条致命信息。

Makefile:错误的行数:未找到文件名:提示信息(No such file or directory)

如果想让make不理那些无法读取的文件,而继续执行,可以在include前加一个减号“-”。如:

-include <filename>

其表示,无论include过程中出现什么错误,都不要报错继续执行。和其它版本make兼容的相关命令是sinclude,其作用和这个是一样的。

4.5  伪目标

“clean”的目标,是一个“伪目标”。

clean:

rm *.o temp

我们生成了许多文件编译文件,也应该提供一个清除它们的“目标”以备完整地重编译而用。 (以“make clean”来使用该目标)。

因为我们并不生成“clean”这个文件。“伪目标”并不是一个文件,只是一个标签,由于“伪目标”不是文件,所以make无法生成它的依赖关系和决定它是否要执行。只有通过显示地指明这个“目标”才能让其生效。当然,“伪目标”的取名不能和文件名重名,不然其就失去了“伪目标”的意义了。

当然,为了避免和文件重名的这种情况,可以使用一个特殊的标记“.PHONY”来显示地指明一个目标是“伪目标”,向make说明,不管是否有这个文件,这个目标就是“伪目标”。

.PHONY : clean

只要有这个声明,不管是否有“clean”文件,要运行“clean”这个目标,只有“make clean”这样。于是整个过程可以这样写:

.PHONY: clean

clean:

rm *.o temp

伪目标一般没有依赖的文件。但是也可以为伪目标指定所依赖的文件。伪目标同样可以作为“默认目标”,只要将其放在第一个。一个示例就是,如果Makefile需要一口气生成若干个可执行文件,但只想简单地敲一个make完事,并且,所有的目标文件都写在一个Makefile中,那么可以使用“伪目标”这个特性:

all : prog1 prog2 prog3

.PHONY : all

prog1 : prog1.o utils.o

cc -o prog1 prog1.o utils.o

prog2 : prog2.o

cc -o prog2 prog2.o

prog3 : prog3.o sort.o utils.o

cc -o prog3 prog3.o sort.o utils.o

Makefile中的第一个目标会被作为其默认目标。我们声明了一个“all”的伪目标,其依赖于其它三个目标。由于伪目标的特性是,总是被执行的,所以其依赖的那三个目标就总是不如“all”这个目标新。所以,其它三个目标的规则总是会被决议。也就达到了我们一口气生成多个目标的目的。“.PHONY : all”声明了“all”这个目标为“伪目标”。

从上面的例子我们可以看出,目标也可以成为依赖。所以,伪目标同样也可成为依赖。看下面的例子:

.PHONY: cleanall cleanobj cleandiff

cleanall : cleanobj cleandiff

rm program

cleanobj :

rm *.o

cleandiff :

rm *.diff

“make clean”将清除所有要被清除的文件。“cleanobj”和“cleandiff”这两个伪目标有点像“子程序”的意思。我们可以输入“make cleanall”和“make cleanobj”和“make cleandiff”命令来达到清除不同种类文件的目的。

4.6  多目标

Makefile的规则中的目标可以不止一个,其支持多目标,有可能多个目标同时依赖于一个文件,并且其生成的命令大体类似。于是我们就能把其合并起来。当然,多个目标的生成规则的执行命令是同一个,这可能会可我们带来麻烦,不过好在可以使用一个自动化变量“[email protected]”(关于自动化变量,将在后面讲述),这个变量表示着目前规则中所有的目标的集合,看一个例子。

bigoutput littleoutput : text.g

generate text.g -$(subst output,,[email protected]) > [email protected]

上述规则等价于:

bigoutput : text.g

generate text.g -big > bigoutput

littleoutput : text.g

generate text.g -little > littleoutput

其中,-$(subst output,,[email protected])中的“$”表示执行一个Makefile的函数,函数名为subst,后面的为参数。关于函数,将在后面讲述。这里的这个函数是截取字符串的意思,“[email protected]”表示目标的集合,就像一个数组,“[email protected]”依次取出目标,并执行命令。

4.7  静态模式

静态模式可以更加容易地定义多目标的规则,可以让规则变得更加的有弹性和灵活。先来看一下语法:

<targets ...>: <target-pattern>: <prereq-patterns ...>

<commands>

...

targets定义了一系列的目标文件,可以有通配符。是目标的一个集合。

target-parrtern是指明了targets的模式,也就是的目标集模式。

prereq-parrterns是目标的依赖模式,它对target-parrtern形成的模式再进行一次依赖目标的定义。

如果<target-parrtern>定义成“%.o”,意思是<target>集合中都是以“.o”结尾的,而如果<prereq-parrterns>定义成“%.c”,意思是对<target-parrtern>所形成的目标集进行二次定义,其计算方法是,取<target-parrtern>模式中的“%”(也就是去掉了[.o]这个结尾),并为其加上[.c]这个结尾,形成的新集合。

所以,“目标模式”或是“依赖模式”中都应该有“%”这个字符,如果你的文件名中有“%”那么你可以使用反斜杠“/”进行转义,来标明真实的“%”字符。

看一个例子:

objects = foo.o bar.o

all: $(objects)

$(objects): %.o: %.c

$(CC) -c $(CFLAGS) $< -o [email protected]

上面的例子中,指明了目标从$object中获取,“%.o”表明要所有以“.o”结尾的目标,也就是“foo.o bar.o”,也就是变量$object集合的模式,而依赖模式“%.c”则取模式“%.o”的“%”,也就是“foo bar”,并为其加下“.c”的后缀,于是,依赖目标就是“foo.c bar.c”。而命令中的“$<”和“[email protected]”则是自动化变量,“$<”表示所有的依赖目标集(也就是“foo.c bar.c”),“[email protected]”表示目标集(也就是“foo.o bar.o”)。于是,上面的规则展开后等价于下面的规则:

foo.o : foo.c

$(CC) -c $(CFLAGS) foo.c -o foo.o

bar.o : bar.c

$(CC) -c $(CFLAGS) bar.c -o bar.o

试想,如果“%.o”有几百个,那种我们只要用这种很简单的“静态模式规则”就可以写完一堆规则,实在是太有效率了。“静态模式规则”的用法很灵活,如果用得好,那会一个很强大的功能。再看一个例子:

files = foo.elc bar.o lose.o

$(filter %.o,$(files)): %.o: %.c

$(CC) -c $(CFLAGS) $< -o [email protected]

$(filter %.elc,$(files)): %.elc: %.el

emacs -f batch-byte-compile $<

$(filter %.o,$(files))表示调用Makefile的filter函数,过滤“$filter”集,只要其中模式为“%.o”的内容。这个例字展示了Makefile中更大的弹性。

4.8  自动生成依赖性

在Makefile中,依赖关系可能会需要包含一系列的头文件,比如,如果main.c中有一句“#include "defs.h"”,那么我们的依赖关系应该是:

main.o : main.c defs.h

但是,如果是一个比较大型的工程,你必需清楚哪些C文件包含了哪些头文件,并且,你在加入或删除头文件时,也需要小心地修改Makefile,这是一个很没有维护性的工作。为了避免这种繁重而又容易出错的事情,我们可以使用C/C++编译的一个功能。大多数的C/C++编译器都支持一个“-M”的选项,即自动找寻源文件中包含的头文件,并生成一个依赖关系。例如,如果我们执行下面的命令:

cc -M main.c

其输出是:

main.o : main.c defs.h

由编译器自动生成的依赖关系,这样一来,就不必再手动书写若干文件的依赖关系,而由编译器自动生成了。需要提醒一句的是,如果使用GNU的C/C++编译器,得用“-MM”参数,不然,“-M”参数会把一些标准库的头文件也包含进来。

gcc -M main.c的输出是:

main.o: main.c defs.h /usr/include/stdio.h /usr/include/features.h /

/usr/include/sys/cdefs.h /usr/include/gnu/stubs.h /

/usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stddef.h /

/usr/include/bits/types.h /usr/include/bits/pthreadtypes.h /

/usr/include/bits/sched.h /usr/include/libio.h /

/usr/include/_G_config.h /usr/include/wchar.h /

/usr/include/bits/wchar.h /usr/include/gconv.h /

/usr/lib/gcc-lib/i486-suse-linux/2.95.3/include/stdarg.h /

/usr/include/bits/stdio_lim.h

gcc -MM main.c的输出则是:

main.o: main.c defs.h

那么,编译器的这个功能如何与我们的Makefile联系在一起呢。因为这样一来,我们的Makefile也要根据这些源文件重新生成,让Makefile自已依赖于源文件?这个功能并不现实,不过我们可以有其它手段来迂回地实现这一功能。GNU组织建议把编译器为每一个源文件的自动生成的依赖关系放到一个文件中,为每一个“name.c”的文件都生成一个“name.d”的Makefile文件,[.d]文件中就存放对应[.c]文件的依赖关系。

于是,我们可以写出[.c]文件和[.d]文件的依赖关系,并让make自动更新或自成[.d]文件,并把其包含在我们的主Makefile中,这样,我们就可以自动化地生成每个文件的依赖关系了。

这里,我们给出了一个模式规则来产生[.d]文件:

%.d: %.c

@set -e; rm -f [email protected]; /

$(CC) -M $(CPPFLAGS) $< > [email protected]

; /

sed ‘s,/($*/)/.o[ :]*,/1.o [email protected] : ,g‘ < [email protected]

> [email protected]; /

rm -f [email protected]

这个规则的意思是,所有的[.d]文件依赖于[.c]文件,“rm -f [email protected]”的意思是删除所有的目标,也就是[.d]文件,第二行的意思是,为每个依赖文件“$<”,也就是[.c]文件生成依赖文件,“[email protected]”表示模式“%.d”文件,如果有一个C文件是name.c,那么“%”就是“name”,“”意为一个随机编号,第二行生成的文件有可能是“name.d.12345”,第三行使用sed命令做了一个替换,关于sed命令的用法请参看相关的使用文档。第四行就是删除临时文件。

总而言之,这个模式要做的事就是在编译器生成的依赖关系中加入[.d]文件的依赖,即把依赖关系:

main.o : main.c defs.h

转成:

main.o main.d : main.c defs.h

于是,我们的[.d]文件也会自动更新了,并会自动生成了,当然,你还可以在这个[.d]文件中加入的不只是依赖关系,包括生成的命令也可一并加入,让每个[.d]文件都包含一个完赖的规则。一旦我们完成这个工作,接下来,我们就要把这些自动生成的规则放进我们的主Makefile中。我们可以使用Makefile的“include”命令,来引入别的Makefile文件(前面讲过),例如:

sources = foo.c bar.c

include $(sources:.c=.d)

上述语句中的“$(sources:.c=.d)”中的“.c=.d”的意思是做一个替换,把变量$(sources)所有[.c]的字串都替换成[.d],关于这个“替换”的内容,在后面会有更为详细的讲述。当然,你得注意次序,因为include是按次来载入文件,最先载入的[.d]文件中的目标会成为默认目标。

4.9 命令显示、执行与出错

(1)显示命令

通常,make会把其要执行的命令行在命令执行前输出到屏幕上。当用“@”字符在命令行前,那么,这个命令将不被make显示出来,最具代表性的例子是,用这个功能来像屏幕显示一些信息。如:

@echo 正在编译XXX模块......

当make执行时,会输出“正在编译XXX模块......”字串,但不会输出命令,如果没有“@”,那么,make将输出:

echo 正在编译XXX模块......

正在编译XXX模块......

如果make执行时,带入make参数“-n”或“--just-print”,那么其只是显示命令,但不会执行命令,这个功能很有利于我们调试Makefile,看看我们书写的命令是执行起来是什么样子的或是什么顺序的。

而make参数“-s”或“--slient”则是全面禁止命令的显示。

(2)命令执行

当依赖目标新于目标时,也就是当规则的目标需要被更新时,make会一条一条的执行其后的命令。需要注意的是,如果你要让上一条命令的结果应用在下一条命令时,你应该使用分号分隔这两条命令。比如你的第一条命令是cd命令,你希望第二条命令得在cd之后的基础上运行,那么你就不能把这两条命令写在两行上,而应该把这两条命令写在一行上,用分号分隔。如:

示例一:

exec:

cd /home/hchen

pwd

示例二:

exec:

cd /home/hchen; pwd

当我们执行“make exec”时,第一个例子中的cd没有作用,pwd会打印出当前的Makefile目录,而第二个例子中,cd就起作用了,pwd会打印出“/home/hchen”。

make一般是使用环境变量SHELL中所定义的系统Shell来执行命令,默认情况下使用UNIX的标准Shell——/bin/sh来执行命令。但在MS-DOS下有点特殊,因为MS-DOS下没有SHELL环境变量,当然你也可以指定。如果你指定了UNIX风格的目录形式,首先,make会在SHELL所指定的路径中找寻命令解释器,如果找不到,其会在当前盘符中的当前目录中寻找,如果再找不到,其会在PATH环境变量中所定义的所有路径中寻找。MS-DOS中,如果你定义的命令解释器没有找到,其会给你的命令解释器加上诸如“.exe”、“.com”、“.bat”、“.sh”等后缀。

(3)命令出错

每当命令运行完后,make会检测每个命令的返回码,如果命令返回成功,那么make会执行下一条命令,当规则中所有的命令成功返回后,这个规则就算是成功完成了。如果一个规则中的某个命令出错了(命令退出码非零),那么make就会终止执行当前规则,这将有可能终止所有规则的执行。

有些时候,命令的出错并不表示就是错误的。例如mkdir命令,我们一定需要建立一个目录,如果目录不存在,那么mkdir就成功执行,万事大吉,如果目录存在,那么就出错了。我们之所以使用mkdir的意思就是一定要有这样的一个目录,于是我们就不希望mkdir出错而终止规则的运行。

为了做到这一点,忽略命令的出错,我们可以在Makefile的命令行前加一个减号“-”(在Tab键之后),标记为不管命令出不出错都认为是成功的。如:

clean:

-rm -f *.o

还有一个全局的办法是,给make加上“-i”或是“--ignore-errors”参数,那么,Makefile中所有命令都会忽略错误。而如果一个规则是以“.IGNORE”作为目标的,那么这个规则中的所有命令将会忽略错误。这些是不同级别的防止命令出错的方法,可以根据你的不同喜欢设置。

还有一个要提一下的make的参数的是“-k”或是“--keep-going”,这个参数的意思是,如果某规则中的命令出错了,那么就终目该规则的执行,但继续执行其它规则。

5. 嵌套执行makefile

在一些大的工程中,我们会把不同模块或是不同功能的源文件放在不同的目录中,我们可以在每个目录中都书写一个该目录的Makefile,这有利于让Makefile变得更加地简洁,而不至于把所有的东西全部写在一个Makefile中,这样会很难维护Makefile,这个技术对于我们模块编译和分段编译有着非常大的好处。

例如,有一个子目录叫subdir,这个目录下有个Makefile文件,来指明了这个目录下文件的编译规则。那么总控的Makefile可以这样书写:

subsystem:

cd subdir && $(MAKE)

其等价于:

subsystem:

$(MAKE) -C subdir

定义$(MAKE)宏变量的意思是,也许我们的make需要一些参数,所以定义成一个变量比较利于维护。这两个例子的意思都是先进入“subdir”目录,然后执行make命令。

把这个Makefile叫做“总控Makefile”,总控Makefile的变量可以传递到下级的Makefile中(如果你显示的声明),但是不会覆盖下层的Makefile中所定义的变量,除非指定了“-e”参数。

如果要传递变量到下级Makefile中,那么可以使用这样的声明:

export <variable ...>

如果你不想让某些变量传递到下级Makefile中,那么你可以这样声明:

unexport <variable ...>

如:

示例一:

export variable = value

其等价于:

variable = value

export variable

其等价于:

export variable := value

其等价于:

variable := value

export variable

示例二:

export variable += value

其等价于:

variable += value

export variable

如果要传递所有的变量,那么,只要一个export就行了。后面什么也不用跟,表示传递所有的变量。

需要注意的是,有两个变量,一个是SHELL,一个是MAKEFLAGS,这两个变量不管你是否export,其总是要传递到下层Makefile中,特别是MAKEFILES变量,其中包含了make的参数信息,如果我们执行“总控Makefile”时有make参数或是在上层Makefile中定义了这个变量,那么MAKEFILES变量将会是这些参数,并会传递到下层Makefile中,这是一个系统级的环境变量。

但是make命令中的有几个参数并不往下传递,它们是“-C”,“-f”,“-h”“-o”和“-W”(有关Makefile参数的细节将在后面说明),如果不想往下层传递参数,可以这样来:

subsystem:

cd subdir && $(MAKE) MAKEFLAGS=

如果定义了环境变量MAKEFLAGS,那么得确信其中的选项是大家都会用到的,如果其中有“-t”,“-n”,和“-q”参数,那么将会有让你意想不到的结果。

还有一个在“嵌套执行”中比较有用的参数,“-w”或是“--print-directory”会在make的过程中输出一些信息,让你看到目前的工作目录。比如,如果我们的下级make目录是“/home/hchen/gnu/make”,如果我们使用“make -w”来执行,那么当进入该目录时,会看到:

make: Entering directory `/home/hchen/gnu/make‘.

而在完成下层make后离开目录时,会看到:

make: Leaving directory `/home/hchen/gnu/make‘

当使用“-C”参数来指定make下层Makefile时,“-w”会被自动打开的。如果参数中有“-s”(“--slient”)或是“--no-print-directory”,那么,“-w”总是失效的。

时间: 2024-10-12 19:43:43

makefile文件详解的相关文章

MakeFile 文件详解

GNU的make工作时的执行步骤入下:(想来其它的make也是类似)      1.读入所有的Makefile.      2.读入被include的其它Makefile.      3.初始化文件中的变量.      4.推导隐晦规则,并分析所有规则.      5.为所有的目标文件创建依赖关系链.      6.根据依赖关系,决定哪些目标要重新生成.      7.执行生成命令. makefile文件伪命令 make一般是使用环境变量SHELL中所定义的系统Shell来执行命令,默认情况下使

“makefile”写法详解,一步一步写一个实用的makefile,详解 sed &#39;s,$?\.o[ :]*,\1.o [email&#160;protected] : ,g&#39; &lt; [email&#160;protected]

目的:编写一个实用的makefile,能自动编译当前目录下所有.c/.cpp源文件,支持二者混合编译.并且当某个.c/.cpp..h或依赖的源文件被修改后,仅重编涉及到的源文件,未涉及的不编译. 二要达到这个目的,用到的技术有:1-使用wildcard函数来获得当前目录下所有.c/.cpp文件的列表.2-make的多目标规则.3-make的模式规则.4-用gcc -MM命令得到一个.c/.cpp文件include了哪些文件.5-用sed命令对gcc -MM命令的结果作修改.6-用include命

Android.mk文件详解(转)

源:Android.mk文件详解 从对Makefile一无所知开始,折腾了一个多星期,终于对Android.mk有了一个全面些的了解.了解了标准的Makefile后,发现Android.mk其实是把真正的Makefile包装起来,做成了一个对使用者来说很简单的东西.使用它来编译程序时,不管是动态库.可执行的二进制文件,还是Jar库.APK包,只要沿着一个简单的思路来做三大步就可以了:清除旧变量,设置新变量,调用编译函数. 明白了以后,发现Makefile语法不是问题,有很多教程和高手.编译模块时

package-info.java文件详解

package-info.java文件详解 作者:chszs,转载需注明.博客主页:http://blog.csdn.net/chszs 一.pacakge-info.java介绍 pacakge-info.java是一个Java文件,可以添加到任何的Java源码包中.pacakge-info.java的目标是提供一个包级的文档说明或者是包级的注释. pacakge-info.java文件中,唯一要求包含的内容是包的声明语句,比如: package com.ch.service; 二.包文档 在

史上最全的maven的pom.xml文件详解

史上最全的maven的pom.xml文件详解 http://www.cnblogs.com/hafiz/p/5360195.html <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 h

POM文件详解(1)

POM文件详解 <project xmlns=http://maven.apache.org/POM/4.0.0 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd "> 1      Parent坐标 <

T-SQL 操作文件 详解

/*******  导出到excel EXEC master..xp_cmdshell 'bcp SettleDB.dbo.shanghu out c:\temp1.xls -c -q -S"GNETDATA/GNETDATA" -U"sa" -P""' /***********  导入Excel SELECT * FROM OpenDataSource( 'Microsoft.Jet.OLEDB.4.0', 'Data Source="

delphi 资源文件详解

delphi资源文件详解 一.引子: 现在的Windows应用程序几乎都使用图标.图片.光标.声音等,我们称它们为资源(Resource).最简单的使用资源的办法是把这些资源的源文件打入软件包,以方便程序需要的时候调用.资源是程序的一部分,程序要正常运行就离不了资源文件.但是它是不可执行代码. 为了更好地管理资源,Delphi中提供了一种.RES类型的资源文件.它可以把我们程序中所需要的资源整合到一个资源文件(.RES)下来.在编译应用程序时直接编译进了可执行程序里,成为应用程序的整合体. 这样

hibernate 对象关系映射文件详解

POJO 类和数据库的映射文件*.hbm.xml POJO类和关系数据库之间的映射可以用一个XML文档来定义. 映射文件的扩展名为.hbm.xml 在运行时Hibernate将根据这个映射文件来生成各种SQL语句 通过POJO类的数据库映射文件,Hibernate可以理解持久化类和数据表之间的对应关系,也可以理解持久化类属性与数据库表列之间的对应关系 映射文件说明 hibernate-mapping 类层次:class 主键:id 基本类型:property 实体引用类: many-to-one