梯度迭代树(GBDT)算法原理及Spark MLlib调用实例(Scala/Java/python)
http://blog.csdn.net/liulingyuan6/article/details/53426350
梯度迭代树
算法简介:
梯度提升树是一种决策树的集成算法。它通过反复迭代训练决策树来最小化损失函数。决策树类似,梯度提升树具有可处理类别特征、易扩展到多分类问题、不需特征缩放等性质。Spark.ml通过使用现有decision tree工具来实现。
梯度提升树依次迭代训练一系列的决策树。在一次迭代中,算法使用现有的集成来对每个训练实例的类别进行预测,然后将预测结果与真实的标签值进行比较。通过重新标记,来赋予预测结果不好的实例更高的权重。所以,在下次迭代中,决策树会对先前的错误进行修正。
对实例标签进行重新标记的机制由损失函数来指定。每次迭代过程中,梯度迭代树在训练数据上进一步减少损失函数的值。spark.ml为分类问题提供一种损失函数(Log Loss),为回归问题提供两种损失函数(平方误差与绝对误差)。
Spark.ml支持二分类以及回归的随机森林算法,适用于连续特征以及类别特征。
*注意梯度提升树目前不支持多分类问题。
参数:
checkpointInterval:
类型:整数型。
含义:设置检查点间隔(>=1),或不设置检查点(-1)。
featuresCol:
类型:字符串型。
含义:特征列名。
impurity:
类型:字符串型。
含义:计算信息增益的准则(不区分大小写)。
labelCol:
类型:字符串型。
含义:标签列名。
lossType:
类型:字符串型。
含义:损失函数类型。
maxBins:
类型:整数型。
含义:连续特征离散化的最大数量,以及选择每个节点分裂特征的方式。
maxDepth:
类型:整数型。
含义:树的最大深度(>=0)。
maxIter:
类型:整数型。
含义:迭代次数(>=0)。
minInfoGain:
类型:双精度型。
含义:分裂节点时所需最小信息增益。
minInstancesPerNode:
类型:整数型。
含义:分裂后自节点最少包含的实例数量。
predictionCol:
类型:字符串型。
含义:预测结果列名。
rawPredictionCol:
类型:字符串型。
含义:原始预测。
seed:
类型:长整型。
含义:随机种子。
subsamplingRate:
类型:双精度型。
含义:学习一棵决策树使用的训练数据比例,范围[0,1]。
stepSize:
类型:双精度型。
含义:每次迭代优化步长。
示例:
下面的例子导入LibSVM格式数据,并将之划分为训练数据和测试数据。使用第一部分数据进行训练,剩下数据来测试。训练之前我们使用了两种数据预处理方法来对特征进行转换,并且添加了元数据到DataFrame。
Scala:
[plain] view plain copy
- import org.apache.spark.ml.Pipeline
- import org.apache.spark.ml.classification.{GBTClassificationModel, GBTClassifier}
- import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator
- import org.apache.spark.ml.feature.{IndexToString, StringIndexer, VectorIndexer}
- // Load and parse the data file, converting it to a DataFrame.
- val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
- // Index labels, adding metadata to the label column.
- // Fit on whole dataset to include all labels in index.
- val labelIndexer = new StringIndexer()
- .setInputCol("label")
- .setOutputCol("indexedLabel")
- .fit(data)
- // Automatically identify categorical features, and index them.
- // Set maxCategories so features with > 4 distinct values are treated as continuous.
- val featureIndexer = new VectorIndexer()
- .setInputCol("features")
- .setOutputCol("indexedFeatures")
- .setMaxCategories(4)
- .fit(data)
- // Split the data into training and test sets (30% held out for testing).
- val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3))
- // Train a GBT model.
- val gbt = new GBTClassifier()
- .setLabelCol("indexedLabel")
- .setFeaturesCol("indexedFeatures")
- .setMaxIter(10)
- // Convert indexed labels back to original labels.
- val labelConverter = new IndexToString()
- .setInputCol("prediction")
- .setOutputCol("predictedLabel")
- .setLabels(labelIndexer.labels)
- // Chain indexers and GBT in a Pipeline.
- val pipeline = new Pipeline()
- .setStages(Array(labelIndexer, featureIndexer, gbt, labelConverter))
- // Train model. This also runs the indexers.
- val model = pipeline.fit(trainingData)
- // Make predictions.
- val predictions = model.transform(testData)
- // Select example rows to display.
- predictions.select("predictedLabel", "label", "features").show(5)
- // Select (prediction, true label) and compute test error.
- val evaluator = new MulticlassClassificationEvaluator()
- .setLabelCol("indexedLabel")
- .setPredictionCol("prediction")
- .setMetricName("accuracy")
- val accuracy = evaluator.evaluate(predictions)
- println("Test Error = " + (1.0 - accuracy))
- val gbtModel = model.stages(2).asInstanceOf[GBTClassificationModel]
- println("Learned classification GBT model:\n" + gbtModel.toDebugString)
Java:
[java] view plain copy
- import org.apache.spark.ml.Pipeline;
- import org.apache.spark.ml.PipelineModel;
- import org.apache.spark.ml.PipelineStage;
- import org.apache.spark.ml.classification.GBTClassificationModel;
- import org.apache.spark.ml.classification.GBTClassifier;
- import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
- import org.apache.spark.ml.feature.*;
- import org.apache.spark.sql.Dataset;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.SparkSession;
- // Load and parse the data file, converting it to a DataFrame.
- Dataset<Row> data = spark
- .read()
- .format("libsvm")
- .load("data/mllib/sample_libsvm_data.txt");
- // Index labels, adding metadata to the label column.
- // Fit on whole dataset to include all labels in index.
- StringIndexerModel labelIndexer = new StringIndexer()
- .setInputCol("label")
- .setOutputCol("indexedLabel")
- .fit(data);
- // Automatically identify categorical features, and index them.
- // Set maxCategories so features with > 4 distinct values are treated as continuous.
- VectorIndexerModel featureIndexer = new VectorIndexer()
- .setInputCol("features")
- .setOutputCol("indexedFeatures")
- .setMaxCategories(4)
- .fit(data);
- // Split the data into training and test sets (30% held out for testing)
- Dataset<Row>[] splits = data.randomSplit(new double[] {0.7, 0.3});
- Dataset<Row> trainingData = splits[0];
- Dataset<Row> testData = splits[1];
- // Train a GBT model.
- GBTClassifier gbt = new GBTClassifier()
- .setLabelCol("indexedLabel")
- .setFeaturesCol("indexedFeatures")
- .setMaxIter(10);
- // Convert indexed labels back to original labels.
- IndexToString labelConverter = new IndexToString()
- .setInputCol("prediction")
- .setOutputCol("predictedLabel")
- .setLabels(labelIndexer.labels());
- // Chain indexers and GBT in a Pipeline.
- Pipeline pipeline = new Pipeline()
- .setStages(new PipelineStage[] {labelIndexer, featureIndexer, gbt, labelConverter});
- // Train model. This also runs the indexers.
- PipelineModel model = pipeline.fit(trainingData);
- // Make predictions.
- Dataset<Row> predictions = model.transform(testData);
- // Select example rows to display.
- predictions.select("predictedLabel", "label", "features").show(5);
- // Select (prediction, true label) and compute test error.
- MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
- .setLabelCol("indexedLabel")
- .setPredictionCol("prediction")
- .setMetricName("accuracy");
- double accuracy = evaluator.evaluate(predictions);
- System.out.println("Test Error = " + (1.0 - accuracy));
- GBTClassificationModel gbtModel = (GBTClassificationModel)(model.stages()[2]);
- System.out.println("Learned classification GBT model:\n" + gbtModel.toDebugString());
Python:
[python] view plain copy
- from pyspark.ml import Pipeline
- from pyspark.ml.classification import GBTClassifier
- from pyspark.ml.feature import StringIndexer, VectorIndexer
- from pyspark.ml.evaluation import MulticlassClassificationEvaluator
- # Load and parse the data file, converting it to a DataFrame.
- data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
- # Index labels, adding metadata to the label column.
- # Fit on whole dataset to include all labels in index.
- labelIndexer = StringIndexer(inputCol="label", outputCol="indexedLabel").fit(data)
- # Automatically identify categorical features, and index them.
- # Set maxCategories so features with > 4 distinct values are treated as continuous.
- featureIndexer =\
- VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data)
- # Split the data into training and test sets (30% held out for testing)
- (trainingData, testData) = data.randomSplit([0.7, 0.3])
- # Train a GBT model.
- gbt = GBTClassifier(labelCol="indexedLabel", featuresCol="indexedFeatures", maxIter=10)
- # Chain indexers and GBT in a Pipeline
- pipeline = Pipeline(stages=[labelIndexer, featureIndexer, gbt])
- # Train model. This also runs the indexers.
- model = pipeline.fit(trainingData)
- # Make predictions.
- predictions = model.transform(testData)
- # Select example rows to display.
- predictions.select("prediction", "indexedLabel", "features").show(5)
- # Select (prediction, true label) and compute test error
- evaluator = MulticlassClassificationEvaluator(
- labelCol="indexedLabel", predictionCol="prediction", metricName="accuracy")
- accuracy = evaluator.evaluate(predictions)
- print("Test Error = %g" % (1.0 - accuracy))
- gbtModel = model.stages[2]
- print(gbtModel) # summary only