Time limit : 2sec / Memory limit : 1024MB
Score : 700 points
Problem Statement
There is an integer sequence of length 2N: A0,A1,…,A2N−1. (Note that the sequence is 0-indexed.)
For every integer K satisfying 1≤K≤2N−1, solve the following problem:
- Let i and j be integers. Find the maximum value of Ai+Aj where 0≤i<j≤2N−1 and (i or j)≤K. Here, or denotes the bitwise OR.
Constraints
- 1≤N≤18
- 1≤Ai≤109
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
N A0 A1 … A2N−1
Output
Print 2N−1 lines. In the i-th line, print the answer of the problem above for K=i.
Sample Input 1
Copy
2 1 2 3 1
Sample Output 1
Copy
3 4 5
For K=1, the only possible pair of i and j is (i,j)=(0,1), so the answer is A0+A1=1+2=3.
For K=2, the possible pairs of i and j are (i,j)=(0,1),(0,2). When (i,j)=(0,2), Ai+Aj=1+3=4. This is the maximum value, so the answer is 4.
For K=3, the possible pairs of i and j are (i,j)=(0,1),(0,2),(0,3),(1,2),(1,3),(2,3) . When (i,j)=(1,2), Ai+Aj=2+3=5. This is the maximum value, so the answer is 5.
Sample Input 2
Copy
3 10 71 84 33 6 47 23 25
Sample Output 2
Copy
81 94 155 155 155 155 155
Sample Input 3
Copy
4 75 26 45 72 81 47 97 97 2 2 25 82 84 17 56 32
Sample Output 3
Copy
101 120 147 156 156 178 194 194 194 194 194 194 194 194 194要求max(Ai+Aj) (0≤i<j≤2N−1 && i|j≤k),显然i <= k && j <= k,只要求max(Ai+Aj) (0≤i<j≤2N−1 && i|k=k && j|k=k),然后,就可以得出想要的结果,i|k=k说明i是在k的基础上二进制位中的0保持不变,改变1,把1变为0,则i < k,这样求前缀,然后排着往后更新最大值即可。代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <algorithm> #define Max 1 << 19 using namespace std; int n,e,s[Max]; int r[Max][2];///记录最大值下标 bool cmp(int a,int b){ return s[a] < s[b]; } int main(){ scanf("%d",&n); e = 1 << n;///总数个数 for (int i = 0;i < e;i ++) scanf("%d",&s[i]); s[e] = -1; r[0][0] = 0;///初始化 r[0][1] = e; for (int i = 1;i < e;i ++){ r[i][0] = i;///初始化 r[i][1] = e; int x[4]; for (int j = 0;j < n;j ++) if (i & (1 << j)){///此位为1 int d = i ^ (1 << j);///把这位变成0 对于d的情况前面已经确定过 这里直接用 x[0] = r[i][0]; x[1] = r[i][1]; x[2] = r[d][0]; x[3] = r[d][1]; sort(x,x + 4,cmp);///按照对应位置值从小到大排列下标 r[i][0] = x[3];///存最大值下标 r[i][1] = x[2] == x[3] ? x[1] : x[2];///存非重复下标 } } int ans = 0; for (int i = 1;i < e;i ++){ ans = max(ans,s[r[i][0]] + s[r[i][1]]);///前缀更新i的最大值 printf("%d\n",ans); } return 0; }
原文地址:https://www.cnblogs.com/8023spz/p/9456664.html