强连通分量--tarjan算法

今天学了一个强连通分量,用tarjan做。北京之前讲过,今天讲完和之前一样,没有什么进步。上课没听讲,只好回来搞,这里安利一个博客:链接

https://blog.csdn.net/qq_34374664/article/details/77488976

讲一下我自己的体会吧,其实就是维护一个栈,然后树上跑dfs,每个节点存两个值:dn和low,dn代表dfs的顺序(时间),low代表的是他可以连通的最小的节点。

模拟一下,然后就会发现,其实整个算法就是模拟了一下将每个点压入栈。然后遇到之前在栈里的元素,向后弹出到这一位就行了。

洛谷板子题:链接

直接上代码,很好懂。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int m,n,len = 0,stc[50050];
int ri = 0,tot = 0,ans = 0;
int num[50005];
struct node{
    int l,r,nxt;
}a[50050];
int low[50050],lst[50050];
int dn[50080];
int chu[50050];
bool vis[50050];
int add(int x,int y)
{
    a[++len].l = x;
    a[len].r = y;
    a[len].nxt = lst[x];
    lst[x] = len;
    chu[x]++;
}
void dfs(int x)
{
    dn[x] = low[x] = ++tot;
    stc[++ri] = x;
    vis[x] = 1;
    for(int k = lst[x];k;k = a[k].nxt)
    {
        int y = a[k].r;
        if(!dn[y])
        {
            dfs(y);
            low[x] = min(low[x],low[y]);
        }
        else if(vis[y])
        {
            low[x] = min(low[x],dn[y]);
        }
    }
    if(low[x] == dn[x])
    {
        ans ++;
        int v;
        do
        {
            num[ans]++;
            vis[stc[ri]] = 0;
            v = stc[ri--];
        }
        while(x != v);
    }
}
int main()
{
    memset(vis,0,sizeof(vis));
    scanf("%d%d",&n,&m);
    int x,y;
    for(int i = 1;i <= m;i++)
    {
        scanf("%d%d",&x,&y);
        add(x,y);
    }
    for(int i = 1;i <= n;i++)
        if(dn[i] == 0)
        {
            dfs(i);
        }
//    cout<<ans<<endl;
    tot = 0;
    for(int i = 1;i <= ans;i++)
    {
        if(num[i] > 1)
        {
            tot++;
        }
    }
    printf("%d\n",tot);
    return 0;
}

原文地址:https://www.cnblogs.com/DukeLv/p/9383780.html

时间: 2024-10-01 08:04:37

强连通分量--tarjan算法的相关文章

HDU 1269 强连通分量tarjan算法

迷宫城堡 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6655    Accepted Submission(s): 2973 Problem Description 为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房

图之强连通、强连通图、强连通分量 Tarjan算法

强连通分量 简介 在阅读下列内容之前,请务必了解图论基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Components,SCC)的定义是:极大的强连通子图. 这里想要介绍的是如何来求强连通分量. Tarjan 算法 Robert E. Tarjan (1948~) 美国人. Tarjan 发明了很多算法结构.光 Tarjan 算法就有很多,比如求各种联通分量的 Tarjan 算法,求 LCA(Lowest Comm

求图的强连通分量--tarjan算法

一:tarjan算法详解 ?思想: ? ?做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间最早的节点的开始时间.(也就是之后的深搜所能到达的最小开始时间)初始时dfn[i]=low[i] ? ?在DFS过程中会形成一搜索树.在搜索树上越先遍历到的节点,显然dfn的值就越小. ? ?DFS过程中,碰到哪个节点,就将哪个节点入栈.栈中节点只有在其所属的强连通分量已经全部求出时,才会出栈. ?

poj 2186 Popular Cows 【强连通分量Tarjan算法 + 树问题】

题目地址:http://poj.org/problem?id=2186 Popular Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 27496   Accepted: 11059 Description Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows

图论-强连通分量-Tarjan算法

有关概念: 如果图中两个结点可以相互通达,则称两个结点强连通. 如果有向图G的每两个结点都强连通,称G是一个强连通图. 有向图的极大强连通子图(没有被其他强连通子图包含),称为强连通分量.(这个定义在百科上和别的大神的博客中不太一样,暂且采用百科上的定义) Tarjan算法的功能就是求有向图中的强连通分量 思路: 定义DFNi存放访问到i结点的次序(时间戳),Lowi存放i结点及向i下方深搜到的结点中能追溯到的访问次序最小的结点的访问次序(即这些结点回溯上去能找到的最小的DFN值),找到未被访问

求强连通分量Tarjan算法

int dfn[16]; // 时间戳 int dfn_num = 0; // 时间 int low[16]; // 节点u所能访问到的最小时间戳 int inSt[16]; // 节点u是否在栈中. int st[16]; int top = 0; // 我们维护的信息. int col[16]; // 给节点染色, 同一个连通块的节点应该是同一个颜色的. int col_num = 0; // 颜色值. int size[16]; // 每个颜色值所拥有的块数. /* 第一步: 访问当前节点

强连通分量Tarjan算法模板

#include<map> #include<set> #include<cmath> #include<stack> #include<queue> #include<cstdio> #include<string> #include<vector> #include<cstring> #include<iomanip> #include<sstream> #include

强连通分量(tarjan求强连通分量)

双DFS方法就是正dfs扫一遍,然后将边反向dfs扫一遍.<挑战程序设计>上有说明. 双dfs代码: 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <vector> 5 6 using namespace std; 7 const int MAXN = 1e4 + 5; 8 vector <int> G[MAXN]; //图的邻接表

求有向图的强连通分量的算法

下面是求有向图的强连通分量的算法的代码: import java.util.Scanner; class Qiufenliang//定义求强连通分量的类 { String lu="";//定义的一个字符型变量,记录强连通分量的路径 public static int s=0; public void qiu(int a[][],int l)//定义函数,参数a为二维数组,参数l为数组的维数 { int t=0;//定义int型变量,进行数量的统计 for(int i=1;i<l;