51nod 1110 距离之和最小V3

X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i]。点P到点P[i]的带权距离 = 实际距离 * P[i]的权值。求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和。

Input

第1行:点的数量N。(2 <= N <= 10000)
第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值。(-10^5 <= X[i] <= 10^5,1 <= W[i] <= 10^5)

Output

输出最小的带权距离之和。

Input示例

5
-1 1
-3 1
0 1
7 1
9 1

Output示例

20中位数的题目,但我是用前缀和做的,从小到大排列,也可以证明在中间时最小
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#include <queue>
#include <stack>
#include <cstdlib>
#include <iomanip>
#include <cmath>
#include <cassert>
#include <ctime>
#include <map>
#include <set>
using namespace std;
#pragma comment(linker, "/stck:1024000000,1024000000")
#pragma GCC diagnostic error "-std=c++11"
#define lowbit(x) (x&(-x))
#define max(x,y) (x>=y?x:y)
#define min(x,y) (x<=y?x:y)
#define MAX 100000000000000000
#define MOD 1000000007
#define esp 1e-9
#define pi acos(-1.0)
#define ei exp(1)
#define PI 3.1415926535897932384626433832
#define ios() ios::sync_with_stdio(true)
#define INF 0x3f3f3f3f
typedef long long ll;
struct node
{
    ll x,w;
    bool operator<(const node &a) const{
        return a.x>x;
    }
}e[10006];
int n;
ll sum_front[10006],sum_last[10006],l[10006],r[10006];
int main()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%lld%lld",&e[i].x,&e[i].w);
    sort(e+1,e+n+1);
    for(int i=1;i<=n;i++)
    {
        sum_front[i]=sum_front[i-1]+l[i-1]*(e[i].x-e[i-1].x);
        l[i]=l[i-1]+e[i].w;
    }
    for(int i=n;i;i--)
    {
        sum_last[i]=sum_last[i+1]+r[i+1]*(e[i+1].x-e[i].x);
        r[i]=r[i+1]+e[i].w;
    }
    ll ans=1000000000000000000;
    for(int i=1;i<=n;i++)
        ans=min(ans,sum_front[i]+sum_last[i]);
    printf("%lld\n",ans);
    return 0;
}

原文地址:https://www.cnblogs.com/shinianhuanniyijuhaojiubujian/p/9571367.html

时间: 2024-10-03 22:22:43

51nod 1110 距离之和最小V3的相关文章

51NOD 1110 距离之和最小 V3(中位数 + 技巧)

传送门 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= W[i] <= 10^5) Output 输出最小的带权距离之和.

51Nod 1110 距离之和最小 V3 中位数 思维

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].点P到点P[i]的带权距离 = 实际距离 * P[i]的权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和.Input第1行:点的数量N.(2 <= N <= 10000)第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 &

1110 距离之和最小 V3

1110 距离之和最小 V3 基准时间限制:1 秒 空间限制:131072 KB X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= 

51NOD 1108 距离之和最小 V2(中位数 + 化整为分)

传送门 三维空间上有N个点, 求一个点使它到这N个点的曼哈顿距离之和最小,输出这个最小的距离之和. 点(x1,y1,z1)到(x2,y2,z2)的曼哈顿距离就是|x1-x2| + |y1-y2| + |z1-z2|.即3维坐标差的绝对值之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行3个整数,中间用空格分隔,表示点的位置.(-10^9 <= X[i], Y[i], Z[i] <= 10^9) Output 输出最小曼哈顿距离之

51nod1110 距离之和最小 V3

基准时间限制:1 秒 空间限制:131072 KB 分值: 40 X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * 权值.求X轴上一点使它到这N个点的带权距离之和最小,输出这个最小的带权距离之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行2个数,中间用空格分隔,分别是点的位置及权值.(-10^5 <= X[i] <= 10^5,1 <= W[i] <

51nod 1096 距离之和最小【中位数】

1096 距离之和最小 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 X轴上有N个点,求X轴上一点使它到这N个点的距离之和最小,输出这个最小的距离之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:点的位置.(-10^9 <= P[i] <= 10^9) Output 输出最小距离之和 Input示例 5 -1 -3 0 7 9 Output示例 20[分析]:注意LL,距离abs

【51NOD】1096 距离之和最小

[算法]数学 [题解] 其实就是求中位数,奇数个点就是最中间的点,偶数个点就是最中间两个点和它们之间的区域皆可(所以偶数不必取到两点正中央,取两点任意一点即可). 我们可以想象现在x轴上有n个点,我们设定的目标点在最左边,那么可以算出距离总和ans. 目标点往右移动1,相当于ans+左边点数-右边点数. 那么目标点到达正中央(或中央两点之间)前,ans单调递减(左边点<右边点),之后ans又单调递增(左边点>右边点) 由此,目标点为中位数点时,距离之和最小. #include<cstdi

1108 距离之和最小V2

1108 距离之和最小 V2 三维空间上有N个点, 求一个点使它到这N个点的曼哈顿距离之和最小,输出这个最小的距离之和. 点(x1,y1,z1)到(x2,y2,z2)的曼哈顿距离就是|x1-x2| + |y1-y2| + |z1-z2|.即3维坐标差的绝对值之和. Input 第1行:点的数量N.(2 <= N <= 10000) 第2 - N + 1行:每行3个整数,中间用空格分隔,表示点的位置.(-10^9 <= X[i], Y[i], Z[i] <= 10^9) Output

HDU 1227 dp距离和最小,中位数的应用

在n个商店中建m个仓库,使各个商店到仓库的路程之和最小,商店到哪个仓库是有选择的, 总之路程之和要最小! 思路: 从第i个商店到第j个商店建一个仓库,这个仓库所建的位置一定是dis[(i+j)/2],即建在它的中位数处, 所以,这个增加值就是case[i][j]=abs(dis[k]-dis[(i+j)/2])(i<=k<=j); 我们要把它初始为一个尽可能大的数,要找dp[i][j],首先dp[i][j]=10000000(尽可能的大):然后找前一个状态,dp[i-1][m] 为啥是m呢?因