用Tensorflow完成简单的线性回归模型

思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点。

1)随机生成1000个数据点,围绕在y=0.1x+0.3 周围,设置W=0.1,b=0.3,届时看构建的模型是否能学习到w和b的值。

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_points=1000
vectors_set=[]
for i in range(num_points):
    x1=np.random.normal(0.0,0.55)   #横坐标,进行随机高斯处理化,以0为均值,以0.55为标准差
    y1=x1*0.1+0.3+np.random.normal(0.0,0.03)   #纵坐标,数据点在y1=x1*0.1+0.3上小范围浮动
    vectors_set.append([x1,y1])
    x_data=[v[0] for v in vectors_set]
    y_data=[v[1] for v in vectors_set]
    plt.scatter(x_data,y_data,c=‘r‘)
    plt.show()

构造数据如下图

2)构造线性回归模型,学习上面数据图是符合一个怎么样的W和b

    W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name=‘W‘)  # 生成1维的W矩阵,取值是[-1,1]之间的随机数
    b = tf.Variable(tf.zeros([1]), name=‘b‘) # 生成1维的b矩阵,初始值是0
    y = W * x_data + b     # 经过计算得出预估值y
    loss = tf.reduce_mean(tf.square(y - y_data), name=‘loss‘) # 以预估值y和实际值y_data之间的均方误差作为损失
    optimizer = tf.train.GradientDescentOptimizer(0.5) # 采用梯度下降法来优化参数  学习率为0.5
    train = optimizer.minimize(loss, name=‘train‘)  # 训练的过程就是最小化这个误差值
    sess = tf.Session()
    init = tf.global_variables_initializer()
    sess.run(init)
    print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))  # 初始化的W和b是多少
    for step in range(20):   # 执行20次训练
      sess.run(train)
      print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) # 输出训练好的W和b

打印每一次结果,如下图,随着迭代进行,训练的W、b越来越接近0.1、0.3,说明构建的回归模型确实学习到了之间建立的数据的规则。loss一开始很大,后来慢慢变小,说明模型表达效果随着迭代越来越好。

W = [-0.9676645] b = [0.] loss = 0.45196822

W = [-0.6281831] b = [0.29385352] loss = 0.17074569

W = [-0.39535886] b = [0.29584622] loss = 0.07962803

W = [-0.23685378] b = [0.2972129] loss = 0.03739688

W = [-0.12894464] b = [0.2981433] loss = 0.017823622

W = [-0.05548081] b = [0.29877672] loss = 0.008751821

W = [-0.00546716] b = [0.29920793] loss = 0.0045472304

W = [0.02858179] b = [0.2995015] loss = 0.0025984894

W = [0.05176209] b = [0.29970136] loss = 0.0016952885

W = [0.06754307] b = [0.29983744] loss = 0.0012766734

W = [0.07828666] b = [0.29993007] loss = 0.001082654

W = [0.08560082] b = [0.29999313] loss = 0.0009927301

W = [0.09058025] b = [0.30003607] loss = 0.0009510521

W = [0.09397022] b = [0.30006528] loss = 0.00093173544

W = [0.09627808] b = [0.3000852] loss = 0.00092278246

W = [0.09784925] b = [0.30009875] loss = 0.000918633

W = [0.09891889] b = [0.30010796] loss = 0.00091670983

W = [0.0996471] b = [0.30011424] loss = 0.0009158184

W = [0.10014286] b = [0.3001185] loss = 0.00091540517

W = [0.10048037] b = [0.30012143] loss = 0.0009152137

W = [0.10071015] b = [0.3001234] loss = 0.0009151251

原文地址:https://www.cnblogs.com/selenaf/p/9102398.html

时间: 2024-11-05 22:07:22

用Tensorflow完成简单的线性回归模型的相关文章

使用tensorflow进行简单的线性回归

使用tensorflow进行简单的线性回归 标签(空格分隔): tensorflow 数据准备 使用np.random.uniform()生成x方向的数据 使用np.random.uniform()生成bias数据 直线方程为y=0.1x + 0.2 使用梯度下降算法 代码 import numpy as np import tensorflow as tf path = 'D:\tensorflow_quant\ailib\log_tmp' # 生成x数据 points = 100 vecto

tensorflow入门(1):构造线性回归模型

今天让我们一起来学习如何用TF实现线性回归模型.所谓线性回归模型就是y = W * x + b的形式的表达式拟合的模型. 我们先假设一条直线为 y = 0.1x + 0.3,即W = 0.1,b = 0.3,然后利用随机数在这条直线附近产生1000个随机点,然后利用tensorflow构造的线性模型去学习,最后对比模型所得的W和b与真实值的差距即可. (某天在浏览Github的时候,发现了一个好东西,Github上有一个比较好的有关tensorflow的Demo合集,有注释有源代码非常适合新手入

第二篇[机器学习] 学习机器学习,从最简单的线性回归开始

机器学习,分为监督学习和无监督学习,监督学习里有回归和分类,分类有线性回归和逻辑回归. 从最简单的线性回归开始: 通过已有数据需要预测的线性方程: 实际值和预测值的误差,求最小误差函数(最小二乘法): 1.梯度下降法: 其中ε是步长,步长越大,下降越快,但是可能到不了局部最小值,步长越小,下降越慢,计算越多 2.正规方程直接求解: 最小二乘法正规方程组的详细推导: https://zhuanlan.zhihu.com/p/28190949?utm_medium=social&utm_source

机器学习与Tensorflow(1)——机器学习基本概念、tensorflow实现简单线性回归

一.机器学习基本概念 1.训练集和测试集 训练集(training set/data)/训练样例(training examples): 用来进行训练,也就是产生模型或者算法的数据集 测试集(testing set/data)/测试样例 (testing examples):用来专门进行测试已经学习好的模型或者算法的数据集 2.特征向量 特征向量(features/feature vector):属性的集合,通常用一个向量来表示,附属于一个实例 3.分类问题和回归问题 分类 (classific

使用tensorflow实现最简单的线性回归算法

1 #线性回归:用线性模型y=Wx+b拟合sin 2 import numpy as np 3 import matplotlib.pyplot as plt 4 import tensorflow as tf 5 6 #数据,标签 7 x_data = np.linspace(-2*np.pi,2*np.pi,300) 8 noise = np.random.normal(-0.01,0.05,x_data.shape) 9 y_label = np.sin(x_data) + noise 1

03_有监督学习--简单线性回归模型(调用 sklearn 库代码实现)

有监督学习--简单线性回归模型(调用 sklearn 库代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.导入机器学习库 sklearn4.测试:运行算法,从训练好的模型中提取出系数和截距5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型(调用 sklearn 库代码实现) 0.引入依赖 import numpy as npimport matplotlib.pyplot as plt 1.导入数据(data.csv) points = np.genfro

02_有监督学习--简单线性回归模型(梯度下降法代码实现)

有监督学习--简单线性回归模型(梯度下降法代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.定义模型的超参数4.定义核心梯度下降模型函数5.测试:运行梯度下降算法,计算最优的 w 和 b6.画出拟合曲线7.附录-测试数据 有监督学习--简单线性回归模型(梯度下降法代码实现) 0.引入依赖 import numpy as npimport matplotlib.pyplot as plt 1.导入数据(data.csv) points = np.genfromtxt('da

01_有监督学习--简单线性回归模型(最小二乘法代码实现)

有监督学习--简单线性回归模型(最小二乘法代码实现)0.引入依赖1.导入数据(data.csv)2.定义损失函数3.定义模型拟合函数4.测试:运行最小二乘算法,计算 w 和 b5.画出拟合曲线6.附录-测试数据 有监督学习--简单线性回归模型(最小二乘法代码实现) 0.引入依赖 import numpy as npimport matplotlib.pyplot as plt 1.导入数据(data.csv) points = np.genfromtxt('data.csv', delimite

线性回归模型的 MXNet 与 TensorFlow 实现

本文主要探索如何使用深度学习框架 MXNet 或 TensorFlow 实现线性回归模型?并且以 Kaggle 上数据集 USA_Housing 做线性回归任务来预测房价. 回归任务,scikit-learn 亦可以实现,具体操作可以查看 线性回归模型的原理与 scikit-learn 实现. 载入数据 import pandas as pd import numpy as np name = '../dataset/USA_Housing.csv' dataset = pd.read_csv(