R语言中实现层次聚类模型

大家好!在这篇文章中,我将向你展示如何在R中进行层次聚类。

什么是分层聚类?

分层聚类是一种可供选择的方法,它可以自下而上地构建层次结构,并且不需要我们事先指定聚类的数量。

该算法的工作原理如下:

将每个数据点放入其自己的群集中。

确定最近的两个群集并将它们组合成一个群集。

重复上述步骤,直到所有数据点位于一个群集中。

一旦完成,它通常由树状结构表示。

让我们看看分层聚类算法可以做得多好。我们可以使用hclust这个。hclust要求我们以距离矩阵的形式提供数据。我们可以通过使用dist。默认情况下,使用完整的链接方法。

这会生成以下树形图:

?

从图中我们可以看出,群集总数的最佳选择是3或4:

?

要做到这一点,我们可以使用所需数量的群集来切断树cutree。

现在,让我们将它与原始物种进行比较。

它看起来像算法成功地将物种setosa的所有花分为簇1,并将virginica分为簇2,但是与花斑杂交有困难。如果你看看显示不同物种的原始图,你可以理解为什么:

?

让我们看看我们是否可以通过使用不同的连接方法更好。这一次,我们将使用平均连接方法:

这给了我们以下树状图:

?

我们可以看到,群集数量的两个最佳选择是3或5.让我们用cutree它来将它降到3个群集。

我们可以看到,这一次,该算法在聚类数据方面做得更好,只有6个数据点出错。

我们可以如下绘制它与原始数据进行比较:

这给了我们下面的图表:

?

内部颜色与外部颜色不匹配的所有点都是不正确聚类的点。

有问题联系我们!

原文地址:https://www.cnblogs.com/tecdat/p/11064794.html

时间: 2024-10-10 15:32:53

R语言中实现层次聚类模型的相关文章

R语言中的划分聚类模型

原文链接:http://tecdat.cn/?p=6443 划分聚类 是用于基于数据集的相似性将数据集分类为多个组的聚类方法. 分区聚类,包括: K均值聚类 (MacQueen 1967),其中每个聚类由属于聚类的数据点的中心或平均值表示.K-means方法对异常数据点和异常值敏感. K-medoids聚类或PAM(Partitioning Around Medoids,Kaufman和Rousseeuw,1990),其中,每个聚类由聚类中的一个对象表示.与k-means相比,PAM对异常值不太

R语言中批量安装软件包

R是一种开源软件,在编程的时候,需要安装很多软件包,如果一个一个的安装,那将费时费力.由于R支持脚本语言,所以考虑用.R文件存放所有要用的软件包,比如MASS.lpSolve.arules等,然后运行这个.R文件,就可以进行批量安装了. 1. 首先,将R语言中的软件包,按照它们的依存关系,保存在一个.R文件中,比如lib2D.R //lib2D.R install.packages("MASS") install.packages("lpSolve") instal

R语言中如何使用最小二乘法

这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y) 结果如下: $coefficients Intercept         X  0.8310557 0.9

R语言中最简单的向量赋值方法

R语言中最简单的向量赋值方法简介: 1. 生成等差数列的向量x x <- 1:10 #将x向量赋值为1 2 3 4 5 6 7 8 9 10 结果为 > x [1] 1 2 3 4 5 6 7 8 9 10 2. 将x的值全部修改成0 x[] <- 0 #非常简洁的赋值方法,建议使用 x[1:length(x)] <- 0 #不建议使用的赋值方法 结果为: > x[] <- 0 > x [1] 0 0 0 0 0 0 0 0 0 0 3.使用seq函数 x <

R语言中的并行计算——搭建R的集群

转载:http://blog.sina.com.cn/s/blog_83bb57b70101qeys.html 一直纠结于R的大数据计算问题,希望可以找到一个彻底的方案解决它.而云服务器当然是解决这个问题的最佳方案,所以,至少从这方面入手. R的云服务器部署有两种解决方案,一种是使用R语言的并行计算,另外一种是使用RHadoop框架. RHadoop框架其实就是M / R 算法的R语言实现,需要使用者有M / R的计算基础,和R语言平常使用的计算方式有很大的不同,因此,我采用的解决方案是搭建R

机器学习:R语言中如何使用最小二乘法

详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同上一篇博客)(是不是很简单????) > x<-c(6.19,2.51,7.29,7.01,5.7,2.66,3.98,2.5,9.1,4.2) > y<-c(5.25,2.83,6.41,6.71,5.1,4.23,5.05,1.98,10.5,6.3) > lsfit(x,y

R语言中的四类统计分布函数

R语言中提供了四类有关统计分布的函数(密度函数,累计分布函数,分位函数,随机数函数).分别在代表该分布的R函数前加上相应前缀获得(d,p,q,r).如: 1)正态分布的函数是norm,命令dnorm(0)就可以获得正态分布的密度函数在0处的值(0.3989)(默认为标准正态分布). 2)同理,pnorm(0)是0.5就是正态分布的累计密度函数在0处的值. 3)而qnorm(0.5)则得到的是0,即标准正态分布在0.5处的分位数是0(在来个比较常用的:qnorm(0.975)就是那个估计中经常用到

【译文】怎样在R语言中使用SQL命令

[译文]怎样在R语言中使用SQL命令 作者 Fisseha Berhane 对于有SQL背景的R语言学习者而言.sqldf是一个很实用的包,由于它使我们能在R中使用SQL命令.仅仅要掌握了主要的SQL技术.我们就能利用它们在R中操作数据框.关于sqldf包的很多其它信息,能够參看cran. 在这篇文章中,我们将展示怎样在R中利用SQL命令来连接.检索.排序和筛选数据. 我们也将展示怎么利用R语言的函数来实现这些功能.近期我在处理一些FDA(译者注:食品及药物管理局)的不良事件数据.这些数据很混乱

R语言中数据结构

R语言还是有点古老感觉,数据结构没有Python中那么好用,下面简单总结一下R语言中常用的几个数据结构. 向量: R中的向量可以理解为一维的数组,每个元素的mode必须相同,可以用c(x:y)进行创建,如x <- c(1:9). 矩阵: R中的矩阵可以理解为二维数组,每一个元素必须要有相同的mode,使用matrix进行创建,matrix的形式为: matrix(vector, nrow=number_of_rows, ncol=number_of_columns, byrow=logical_