Variational Auto-encoder(VAE)变分自编码器-Pytorch

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from torchvision.utils import save_image

# 配置GPU或CPU设置
# Device configuration
device = torch.device(‘cuda‘ if torch.cuda.is_available() else ‘cpu‘)

# 创建目录
# Create a directory if not exists
sample_dir = ‘samples‘
if not os.path.exists(sample_dir):
    os.makedirs(sample_dir)

# 超参数设置
# Hyper-parameters
image_size = 784
h_dim = 400
z_dim = 20
num_epochs = 15
batch_size = 128
learning_rate = 1e-3

# 获取数据集
# MNIST dataset
dataset = torchvision.datasets.MNIST(root=‘./data‘,
                                     train=True,
                                     transform=transforms.ToTensor(),
                                     download=True)

# Data loader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
                                          batch_size=batch_size,
                                          shuffle=True)

# 定义VAE类
# VAE model
class VAE(nn.Module):
    def __init__(self, image_size=784, h_dim=400, z_dim=20):
        super(VAE, self).__init__()
        self.fc1 = nn.Linear(image_size, h_dim)
        self.fc2 = nn.Linear(h_dim, z_dim)
        self.fc3 = nn.Linear(h_dim, z_dim)
        self.fc4 = nn.Linear(z_dim, h_dim)
        self.fc5 = nn.Linear(h_dim, image_size)

    # 编码
    def encode(self, x):
        h = F.relu(self.fc1(x))
        return self.fc2(h), self.fc3(h)

    # 参数重表示
    def reparameterize(self, mu, log_var):
        std = torch.exp(log_var / 2)
        eps = torch.randn_like(std)
        return mu + eps * std
    # 解码
    def decode(self, z):
        h = F.relu(self.fc4(z))
        return F.sigmoid(self.fc5(h))

    def forward(self, x):
        mu, log_var = self.encode(x)
        z = self.reparameterize(mu, log_var)
        x_reconst = self.decode(z)
        return x_reconst, mu, log_var

# 构造VAE实例对象
model = VAE().to(device)
print(model)
# 选择优化器
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
#开始训练
for epoch in range(num_epochs):
    for i, (x, _) in enumerate(data_loader):
        # 前向传播
        x = x.to(device).view(-1, image_size)# 将batch_size*1*28*28 ---->batch_size*image_size  其中,image_size=1*28*28=784
        x_reconst, mu, log_var = model(x)# 将batch_size*748的x输入模型进行前向传播计算

        # 计算重构损失和KL散度
        # Compute reconstruction loss and kl divergence
        # For KL divergence, see Appendix B in VAE paper or http://yunjey47.tistory.com/43
        reconst_loss = F.binary_cross_entropy(x_reconst, x, size_average=False)
        kl_div = - 0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())

        # 反向传播与优化
        # 计算误差(重构误差和KL散度值)
        loss = reconst_loss + kl_div
        # 清空上一步的残余更新参数值
        optimizer.zero_grad()
        # 误差反向传播, 计算参数更新值
        loss.backward()
        # 将参数更新值施加到VAE model的parameters上
        optimizer.step()
        # 每迭代一定步骤,打印结果值
        if (i + 1) % 10 == 0:
            print ("Epoch[{}/{}], Step [{}/{}], Reconst Loss: {:.4f}, KL Div: {:.4f}"
                   .format(epoch + 1, num_epochs, i + 1, len(data_loader), reconst_loss.item(), kl_div.item()))

    with torch.no_grad():
        # Save the sampled images
        # 保存采样值
        # 生成随机数 z
        z = torch.randn(batch_size, z_dim).to(device)# z的大小为batch_size * z_dim = 128*20
        # 对随机数 z 进行解码decode输出
        out = model.decode(z).view(-1, 1, 28, 28)
        # 保存结果值
        save_image(out, os.path.join(sample_dir, ‘sampled-{}.png‘.format(epoch + 1)))

        # Save the reconstructed images
        # 保存重构值
        # 将batch_size*748的x输入模型进行前向传播计算,获取重构值out
        out, _, _ = model(x)
        # 将输入与输出拼接在一起输出保存  batch_size*1*28*(28+28)=batch_size*1*28*56
        x_concat = torch.cat([x.view(-1, 1, 28, 28), out.view(-1, 1, 28, 28)], dim=3)
        save_image(x_concat, os.path.join(sample_dir, ‘reconst-{}.png‘.format(epoch + 1)))

大概长这么个样子:

附上一张结果图:

原文地址:https://www.cnblogs.com/jeshy/p/11437547.html

时间: 2024-11-12 20:44:36

Variational Auto-encoder(VAE)变分自编码器-Pytorch的相关文章

变分自编码器(Variational Autoencoder, VAE)通俗教程

最佳阅读体验请前往原文地址:变分自编码器(Variational Autoencoder, VAE)通俗教程—— 作者:邓范鑫 1. 神秘变量与数据集 现在有一个数据集DX(dataset, 也可以叫datapoints),每个数据也称为数据点. X是一个实际的样本集合,我们假定这个样本受某种神秘力量操控,但是我们也无从知道这些神秘力量是什么?那么我们假定这股神秘力量有n个,起名字叫power1,power2,…,powern吧,他们的大小分别是z1,z2,…,zn,称之为神秘变量表示成一个向量

【Learning Notes】变分自编码(Variational Auto-Encoder,VAE)

近年,随着有监督学习的低枝果实被采摘的所剩无几,无监督学习成为了研究热点.VAE(Variational Auto-Encoder,变分自编码器)[1,2] 和 GAN(Generative Adversarial Networks) 等模型,受到越来越多的关注. 笔者最近也在学习 VAE 的知识(从深度学习角度).首先,作为工程师,我想要正确的实现 VAE 算法,以及了解 VAE 能够帮助我们解决什么实际问题:作为人工智能从业者,我同时希望在一定程度上了解背后的原理. 作为学习笔记,本文按照由

Auto Encoder用于异常检测

对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都是无标签的,人和动物多数情况下都是通过无监督学习获取概念,故而无监督学习拥有广阔的业务场景.举几个场景:网络流量是正常流量还是攻击流量.视频中的人的行为是否正常.运维中服务器状态是否异常等等.有监督学习的做法是给样本标出label,那么标label的过程肯定是基于某一些规则(图片除外),既然有了规则

变分自编码器解析

概述 译自https://jaan.io/what-is-variational-autoencoder-vae-tutorial/ 在讨论变分自动编码器时,为什么深度学习研究人员和概率机器学习人员会感到困惑? 什么是变体自动编码器? 为什么这个词会引起混乱? 这是因为神经网络和概率模型在基本概念和描述语言上存在差异.此教程的目标是弥合这一思想鸿沟,允许在这些领域之间进行更多的协作和讨论,并提供一致的实现方法. 变分自编码器用起来很酷,让我们能够设计复杂的数据生成模型,并将其应用于大型数据集.它

TensorFlow实现去噪自编码器及使用—Masking Noise Auto Encoder

有关于自编码器的原理,请参考博客http://blog.csdn.net/xukaiwen_2016/article/details/70767518:对于对其与原理熟悉的可以直接看下面代码. 首先是使用到的相关库,数学运算相关操作库Numpy和对数据进行预处理的模块Scikit-lean中的preprocessing,使用TensorFlow的MNIST作为数据集. import numpy as np import sklearn.preprocessing as prep import t

[自编码器] [稀疏自编码器] Auto Encoder原理详解

自编码器是一种有效的提取特征的方法,与PCA无监督降维不同,它实际上是独立于有监督.无监督算法外的自监督算法,Hinton大牛主要就是搞这块的,比如被他当做宝贝的玻尔兹曼机... 下面这个PPT主要讲一下自编码器的原理及其变种. 原文地址:https://www.cnblogs.com/virter/p/9547520.html

变分自编码器:原来是这么一回事

链接:https://kexue.fm/archives/5253 分布变换 通常我们会拿VAE跟GAN比较,的确,它们两个的目标基本是一致的——希望构建一个从隐变量Z生成目标数据X的模型,但是实现上有所不同.更准确地讲,它们是假设了Z服从某些常见的分布(比如正态分布或均匀分布),然后希望训练一个模型X=g(Z),这个模型能够将原来的概率分布映射到训练集的概率分布,也就是说,它们的目的都是进行分布之间的变换. 生成模型的难题就是判断生成分布与真实分布的相似度,因为我们只知道两者的采样结果,不知道

Auto Encoder

对自编码器的理解: 对于给定的原始输入x,让网络自动找到一种编码方式(特征提取,原始数据的另一种表达),使其解码后的输出x'尽可能复现原始输入x. 知乎参考:https://www.zhihu.com/question/41490383  UFLDL : http://deeplearning.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95%E4%B8%8E%E7%A8%80%E7%96%8F%E

6.13 Neurons Networks Stack Auto Encoder

对于6.12提到的加深网络深度带来的问题,(gradient diffuse  局部最优等)可以使用stack autoencoder的方法来避免 stack autoencoder是哟中逐层贪婪(Greedy layer-wise training)的训练方法,逐层贪婪的主要思路是每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推.在每一步中,把已经训练好的前  层固定,然后增加第  层(也就是将已经训练好的前  的输