ABAP算法题:斐波那契(Fibonacci)数列

斐波那契(Fibonacci)数列是经典的递推关系式定义的数列。

第一项是0,第二项是1,之后的每一项都是前面两项之和。

(sap labs面试题,要求用不同的方法在白板上写abap算法...毫无心理准备,第一遍写了一个递归,可能是复杂度不太好,面试官让我再写一个,于是写了如下代码)

PARAMETERS: p_number   TYPE i OBLIGATORY.

DATA : x TYPE i VALUE 0,
       y TYPE i VALUE 1.

" 算法1
CASE p_number.
  WHEN 0. WRITE ‘序号无效‘.
  WHEN 1. WRITE x.
  WHEN 2. WRITE y.
  WHEN OTHERS.
    DO p_number - 2 TIMES.
      y = x + y.
      x = y - x.
    ENDDO.
    WRITE y.
ENDCASE.

使用循环不停的替换xy的值,看起来效果好了些,代码也更简洁易懂。

顺带提示注意边界条件,比如用户输入1, 2的时候,这时候当然不必计算。

到目前为止已经是线性的时间复杂度了,关于这个经典数列,有更多其他各种各样的算法,大家可以深入研究。

原文地址:https://www.cnblogs.com/yibing-jia/p/11278027.html

时间: 2024-10-03 07:25:54

ABAP算法题:斐波那契(Fibonacci)数列的相关文章

编程之美 2.9 斐波那契(Fibonacci)数列

编程之美 2.9 斐波那契(Fibonacci)数列 斐波那契的递归表达式如下 F(n)=F(n-1)+F(n-2) n>=2 F(1)=1 F(0)=0 书中提到了三中解决方法 第一种:直接运用递归的方法来进行求解 package org.wrh.programbeautiful; import java.util.Scanner; public class Topic2_9 { public static void main(String[] args) { Topic2_9 t=new T

9.求斐波那契Fibonacci数列通项

(1)递归实现: #include<iostream>using namespace std;int Fibonacci(int); int main(){    int n;    cout<<"please input an number n: "<<endl;    cin>>n; for(int i=1;i<=n;i++)    {        cout<<Fibonacci(i)<<endl; 

斐波那契 [ Fibonacci] 数列之大整数求和

之前做到一题, 不过由于Honor Code的缘故就不说是啥了, 很多人都知道 (-_-) 大概是说有n个牌,每个牌只有A,B两种状态. 当出现连续3个牌的状态一样时,认为不完美. 给出一个[1, 10000]的整数, 让求出完美的排列个数 那么我们就可以分析一下: /*-------------------------------------------------------------------------------分析:    首先要求出不美观的个数,但是尝试可以发现美观的排列更容易

【编程之美】斐波那契(Fibonacci)数列

斐波那契数列是一个非常美丽.和谐的数列,有人说它起源于一对繁殖力惊人.基因非常优秀的兔子,也有人说远古时期的鹦鹉就知道这个规律. 每一个学理工科的学生都知道斐波那契数列,斐波那契数列由如下递推关系式定义: F(0)=0, F(1)=1, n>1时,F(n)=F(n-1)+F(n-2). 每一个上过算法课的同学都能用递归的方法求解斐波那契数列的第n+1项的值,即F(n). 1 int Fibonacci(int n) 2 { 3 if (n <= 0) return 0; 4 else if (

算法学习#02--斐波那契Fibonacci数列算法优化

算法列表 本文从时间效率和占用空间内存角度评估,找出最优算法. 经典递归算法Recursive algorithm(很慢) 动态存储算法Dynamic programming(慢) 矩阵幂算法Matrix exponentiation(快) 倍数公式算法Fast doubling(很快) 倍数公式算法+快速乘法Fast doubling with Karatsuba(最快) Fibonacci数列 1.数列介绍 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂

【C语言】求斐波那契(Fibonacci)数列通项(递归法、非递归法)

意大利的数学家列昂那多·斐波那契在1202年研究兔子产崽问题时发现了此数列.设一对大兔子每月生一对小兔子,每对新生兔在出生一个月后又下崽,假若兔子都不死亡.   问:一对兔子,一年能繁殖成多少对兔子?题中本质上有两类兔子:一类是能生殖的兔子,简称为大兔子:新生的兔子不能生殖,简称为小兔子:小兔子一个月就长成大兔子.求的是大兔子与小兔子的总和. 月     份  ⅠⅡ  Ⅲ  Ⅳ  Ⅴ Ⅵ  Ⅶ  Ⅷ Ⅸ Ⅹ  Ⅺ  Ⅻ大兔对数 1  1   2   3   5  8  13  21 34 55 

斐波那契 (Fibonacci)数列

尾递归会将本次方法的结果计算出来,直接传递给下个方法.效率很快. 一般的递归,在本次方法结果还没出来的时候,就调用了下次的递归, 而程序就要将部分的结果保存在内存中,直到后面的方法结束,再返回来计算.如果递归比较大,可能会照成内存溢出. 实践证明,尾递归 ,确实比普通递归效率高. 下面的例子 ,用 普通递归需要10s完成 , 而用尾递归,只用了1s不到 package com.zf.dg; /** * 题目 * 有一种母牛,出生后第三年,开始生育,每年都生一头 母牛(貌似单性生育,这里就没公牛什

如何用Python输出一个斐波那契Fibonacci数列

a,b = 0, 1 while b<100: print (b), a, b = b, a+b 原文地址:https://www.cnblogs.com/apollo1616/p/9776116.html

百度之星题--斐波拉契数列

题目: du熊学斐波那契I Time Limit : 2000/1000ms (C/Other) Memory Limit : 65535/32768K (C/Other) 本次组委会推荐使用C.C++ Problem Description du熊对数学一直都非常感兴趣.最近在学习斐波那契数列的它,向你展示了一个数字串,它称之为"斐波那契"串: 11235813471123581347112358........ 聪明的你当然一眼就看出了这个串是这么构造的:1.先写下两位在0~9范围

ACM/ICPC算法训练 之 数学很重要—斐波拉契●卢卡斯数列(HNNUOJ 11589)

看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…… 在数学上,斐波纳契数列以如下被以递归的方法定义:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*) 在现代物理.准晶体结构.化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963起出版了以<斐波纳契数列季刊>为名的一份数学杂志,用于专门刊载这方面的