图解Raft:应该是最容易理解的分布式一致性算法

分布式一致性

想象一下,我们有一个单节点系统,且作为数据库服务器,然后存储了一个值(假设为X)。然后,有一个客户端往服务器发送了一个值(假设为8)。只要服务器接受到这个值即可,这个值在单节点上的一致性非常容易保证:

单机环境

但是,如果数据库服务器有多个节点呢?比如,如下图所示,有三个节点:a,b,c。这时候客户端对这个由3个节点组成的数据库集群进行操作时的值一致性如何保证,这就是分布式一致性问题。而Raft就是一种实现了分布式一致性的协议(还有其他一些一致性算法,例如:ZAB、PAXOS等):

分布式环境

一些概念

讲解Raft算法之前,先普及一些Raft协议涉及到的概念:

term:任期,比如新的选举任期,即整个集群初始化时,或者新的Leader选举就会开始一个新的选举任期。

大多数:假设一个集群由N个节点组成,那么大多数就是至少N/2+1。例如:3个节点的集群,大多数就是至少2;5个节点的集群,大多数就是至少3。

状态:每个节点有三种状态,且某一时刻只能是三种状态中的一种:Follower(图左),Candidate(图中),Leader(图右)。假设三种状态不同图案如下所示:

节点状态图

初始化状态时,三个节点都是Follower状态,并且term为0,如下图所示:

初始化

Leader选举

Leader选举需要某个节点发起投票,在确定哪个节点向其他节点发起投票之前,每个节点会分配一个随机的选举超时时间(election timeout)。在这个时间内,节点必须等待,不能成为Candidate状态。现在假设节点a等待168ms , 节点b等待210ms , 节点c等待200ms 。由于a的等待时间最短,所以它会最先成为Candidate,并向另外两个节点发起投票请求,希望它们能选举自己为Leader:

发起投票请求

另外两个节点收到请求后,假设将它们的投票返回给Candidate状态节点a,节点a由于得到了大多数节点的投票,就会从Candidate变为Leader,如下图所示,这个过程就叫做Leader选举(Leader Election)。接下来,这个分布式系统所有的改变都要先经过节点a,即Leader节点:

Leader节点

如果某个时刻,Follower不再收到Leader的消息,它就会变成Candidate。然后请求其他节点给他投票(类似拉票一样)。其他节点就会回复它投票结果,如果它能得到大多数节点的投票,它就能成为新的Leader。

日志复制

假设接下来客户端发起一个SET 5的请求,这个请求会首先由leader即节点a接收到,并且节点a写入一条日志。由于这条日志还没被其他任何节点接收,所以它的状态是uncommitted。

为了提交这条日志,Leader会将这条日志通过心跳消息复制给其他的Follower节点:

一旦有大多数节点成功写入这条日志,那么Leader节点的这条日志状态就会更新为committed状态,并且值更新为5:

Leader节点然后通知其他Follower节点,其他节点也会将值更新为5。如下图所示,这个时候集群的状态是完全一致的,这个过程就叫做日志复制(Log Replication):

两个超时

接下来介绍Raft中两个很重要的超时设置:选举超时和心跳超时。

  • 选举超时

为了防止3个节点(假设集群由3个节点组成)同时发起投票,会给每个节点分配一个随机的选举超时时间(Election Timeout),即从Follower状态成为Candidate状态需要等待的时间。在这个时间内,节点必须等待,不能成为Candidate状态。如下图所示,节点C优先成为Candidate,而节点A和B还在等待中:

选举超时

  • 心跳超时

如下图所示,节点A和C投票给了B,所以节点B是leader节点。节点B会固定间隔时间向两个Follower节点A和C发送心跳消息,这个固定间隔时间被称为heartbeat timeout。Follower节点收到每一条日志信息都需要向Leader节点响应这条日志复制的结果:

重新选举

选举过程中,如果Leader节点出现故障,就会触发重新选举。如下图所示,Leader节点B故障(灰色),这时候节点A和C就会等待一个随机时间(选举超时),谁等待的时候更短,谁就先成为Candidate,然后向其他节点发送投票请求:

如果节点A能得得到节点C的投票,加上自己的投票,就有大多数选票。那么节点A将成为新的Leader节点,并且Term即任期的值加1更新到2:

新Leader节点

需要说明的是,每个选举期只会选出一个Leader。假设同一时间有两个节点成为Candidate(它们随机等待选举超时时间刚好一样),如下图所示,并且假设节点A收到了节点B的投票,而节点C收到了节点D的投票:

这种情况下,就会触发一次新的选举,节点A和节点B又等待一个随机的选举超时时间,直到一方胜出:

我们假设节点A能得到大多数投票,那么接下来节点A就会成为新的Leader节点,并且任期term加1:

网络分区

在发生网络分区的时候,Raft一样能保持一致性。如下图所示,假设我们的集群由5个节点组成,且节点B是Leader节点:

我们假设发生了网络分区:节点A和B在一个网络分区,节点C、D和E在另一个网络分区,如下图所示,且节点B和节点C分别是两个网络分区中的Leader节点:

我们假设还有一个客户端,并且往节点B上发送了一个SET 3,由于网络分区的原因,这个值不能被另一个网络分区中的Leader即节点C拿到,它最多只能被两个节点(节点B和C)感知到,所以它的状态是uncomitted(红色):

另一个客户端准备执行SET 8的操作,由于可以被同一个分区下总计三个节点(节点C、D和E)感知到,3个节点已经符合大多数节点的条件。所以,这个值的状态就是committed:

接下来,我们假设网络恢复正常,如下图所示。节点B能感知到C节点这个Leader的存在,它就会从Leader状态退回到Follower状态,并且节点A和B会回滚之前没有提交的日志(SET 3产生的uncommitted日志)。同时,节点A和B会从新的Leader节点即C节点获取最新的日志(SET 8产生的日志),从而将它们的值更新为8。如此以来,整个集群的5个节点数据完全一致了:

分区网络恢复

原文地址:https://www.cnblogs.com/CQqf2019/p/10947968.html

时间: 2024-11-07 01:17:50

图解Raft:应该是最容易理解的分布式一致性算法的相关文章

Raft 为什么是更易理解的分布式一致性算法

Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都.由于当时拜占庭罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信差传消息.在战争的时候,拜占庭军队内所有将军必需达成 一致的共识,决定是否有赢的机会才去攻打敌人的阵营.但是,在军队内

【转】Raft 为什么是更易理解的分布式一致性算法

编者按:这是看过的Raft算法博客中比较通俗的一篇了,讲解问题的角度比较新奇,图文并茂,值得一看.原文链接:Raft 为什么是更易理解的分布式一致性算法 一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都.由于当时拜占庭罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信差传消息.

Raft 为什么是更易理解的分布式一致性算法——(1)Leader在时,由Leader向Follower同步日志 (2)Leader挂掉了,选一个新Leader,Leader选举算法。

转自:http://www.cnblogs.com/mindwind/p/5231986.html Raft 协议的易理解性描述 虽然 Raft 的论文比 Paxos 简单版论文还容易读了,但论文依然发散的比较多,相对冗长.读完后掩卷沉思觉得还是整理一下才会更牢靠,变成真正属于自己的.这里我就借助前面黑白棋落子里第一种极简思维来描述和概念验证下 Raft 协议的工作方式. 在一个由 Raft 协议组织的集群中有三类角色: Leader(领袖) Follower(群众) Candidate(候选人

【转载】Raft 为什么是更易理解的分布式一致性算法

一致性问题可以算是分布式领域的一个圣殿级问题了,关于它的研究可以回溯到几十年前. 拜占庭将军问题 Leslie Lamport 在三十多年前发表的论文<拜占庭将军问题>(参考[1]). 拜占庭位于如今的土耳其的伊斯坦布尔,是东罗马帝国的首都.由于当时拜占庭罗马帝国国土辽阔,为了防御目的,因此每个军队都分隔很远,将军与将军之间只能靠信差传消息.在战争的时候,拜占庭军队内所有将军必需达成 一致的共识,决定是否有赢的机会才去攻打敌人的阵营.但是,在军队内有可能存有叛徒和敌军的间谍,左右将军们的决定又

分布式一致性算法:Raft 算法

Raft 算法是可以用来替代 Paxos 算法的分布式一致性算法,而且 raft 算法比 Paxos 算法更易懂且更容易实现.本文对 raft 论文进行翻译,希望能有助于读者更方便地理解 raft 的思想.如果对 Paxos 算法感兴趣,可以看我的另一篇文章:分布式系列文章--Paxos算法原理与推导 摘要Raft 是用来管理复制日志(replicated log)的一致性协议.它跟 multi-Paxos 作用相同,效率也相当,但是它的组织结构跟 Paxos 不同.这使得 Raft 比 Pax

兄弟连区块链入门到精通教程区块链共识算法分布式一致性算法Raft

Paxos自1990年提出以后,相当长时间内几乎已成为分布式一致性算法的代名词.但因其难以理解和实现,目前知名实现仅有Chubby.Zookeeper.libpaxos几种,其中Zookeeper使用的ZAB对Paxos做了大量改进.为此,2013年斯坦福的Diego Ongaro.John Ousterhout,提出了新的更易理解和实现的一致性算法,即Raft. Raft和Paxos均只要保证n/2+1节点正常,即可服务.相比Paxos,其优势即为易于理解和实现.Raf将算法分解为:选择领导者

分布式一致性算法Raft

什么是分布式一致性? 我们先来看一个例子: 我们有一个单节点node,这个节点可以是数据库,也可以是一台服务器,当client向node发送data时,X节点收到data,记录下来 由此可见对于单个节点,一致性是很容易实现的. 然而对于多个节点,我们如何来实现一致性,这就是分布式一致性的问题. Raft就是一个实现分布式一致性的协议 下面让我们来看看它是如何工作的? node介绍: 每一个节点有三种state (1) follower state (2) leader state (3) can

分布式一致性算法--Raft

前面一篇文章讲了Paxos协议,这篇文章讲它的姊妹篇Raft协议,相对于Paxos协议,Raft协议更为简单,也更容易工程实现.有关Raft协议和工程实现可以参考这个链接https://raft.github.io/,里面包含了大量的论文,视屏已经动画演示,非常有助于理解协议.概念与术语leader:领导者,提供客户提供服务(生成写日志)的节点,任何时候raft系统中只能有一个leader.follower:跟随者,被动接受请求的节点,不会发送任何请求,只会响应来自leader或者candida

理解分布式一致性与Raft算法

理解分布式一致性与Raft算法 永远绕不开的CAP定理 出于可用性及负载方面考虑,一个分布式系统中数据必然不会只存在于一台机器,一致性简单地说就是分布式系统中的各个部分保持数据一致 但让数据保持一致往往并不像看上去那么简单,假设我们有两台机器A与B,这时A更新了数据,A需要将更新的指令同步到B,如果A到B网络传输到B数据落地的总时间为500ms,那么这个500ms就是可能造成数据不一致的时间窗口,假如两台机器分属不同机房,甚至分属不同国家的机房,其时间窗口会更大,具体会造成什么影响呢? 举个栗子