从《彩色圆环》一题探讨一类环上dp的解法

清橙A1202 bzoj2201 bsoj4074

先看看这篇官方题解的问题\(A\),了解一下经典的圆环染色问题

——《彩色圆环(circle)》命题报告,吴佳俊

题外话:其实还可以更优,用矩阵快速幂可以优化,也可以特征根推出通项公式,这里不展开讨论了

我们从中获取了一种处理环上dp的思路,即增设一维来维护首尾是否相同

先来看链的情况

设\(f[i]\)表示考虑到第\(i\)位时的期望美观度,显然有
\[
f[i]=\sum_{0 \le j < i} f[j]*(i-j)*P[i-j]*(M-1)
\]
其中\(P[i]\)表示连续选\(i\)个相同一种颜色的概率
\[
P[i] = M^{-i}\\]
那么现在用圆环染色的思路来试着写环的dp式

\(f[i][0/1]\)表示要决定的序列的前面(0位)已经确定了一种颜色,考虑到该序列第\(i\)位,且要求该位颜色与(1)/不与(0)0位颜色相同时,期望的美观度(许多题解对\(f\)的定义描述并不准确,实际上这里与圆环染色设置的状态有一点不同,就是实际上开头的颜色是不包含在我们要dp的那一段链中的。这关系到后面计算答案的正确性)
\[
f[i][0] = \sum_{0 \le j < i} f[j][0]*(i-j)*P[i-j]*(m-2) + f[j][1]*(i-j)*P[i-j]*(m-1)\f[i][1] = \sum_{0 \le j < i} f[j][0]*(i-j)*P[i-j]
\]
考虑如何求答案。考虑将首尾相接的那个颜色块的贡献单独拎出来计算。枚举首尾相接颜色块两端加起来的总长度\(x\),则总共有\(x\)种分割首尾的方案,每种方案有\(M\)个颜色可以选择,每个方案贡献为\(x\),剩下的部分就可以用\(f\)来表示了

\(x=N\)时要特判
\[
Ans = P[N]*N*M + \sum_{1 \le x < N} x*x*P[x]*M*f[n-x][0]
\]

\(O(n^2)\)的代码

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<queue>
#include<vector>
using namespace std;
typedef long double ldb;
typedef long long ll;

const ll MXN=1005;
ll N,M;
ldb f[MXN][2];
ldb P[MXN];
int main(){
    cin>>N>>M;
    P[0]=1;for(ll i=1;i<=N;i++) P[i]=P[i-1]/M;
    //f数组开两维,实际上是在与位于0位的虚拟颜色斗智斗勇,即f[i][0/1]表示:某一种颜色在序列的最前方(0位),最后一位是否与该颜色相同,美观程度的期望
    //这样设状态就给后面的答案计算提供了便捷
    f[0][0]=0;f[0][1]=1;//f[0][0]置0,是因为不能让f[i][1]直接从0转移
    for(ll i=1;i<=N;i++){
        f[i][0]=f[i][1]=0;
        for(ll j=0;j<i;j++){//可以从0转移,给了只有一个块转移的机会
            f[i][0]+=f[j][0]*(i-j)*P[i-j]*(M-2)
                    +f[j][1]*(i-j)*P[i-j]*(M-1);
            f[i][1]+=f[j][0]*(i-j)*P[i-j];
        }
    }
    ldb ans=N*P[N]*M;
    for(ll x=1;x<N;x++)
        ans+=x*x*P[x]*M*f[N-x][0];//一个x是贡献,一个x是分割开头和结尾的方式数,f[N-x][0]则充当了中间部分
    printf("%.5Lf",ans);
    return 0;
}

我们发现推出的dp方程有一部分是与\(j\)无关的。将它们提出来,维护剩下的只与\(j\)有关的前缀和,复杂度即可降至\(O(N)\)

前缀和优化后\(O(n)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<queue>
#include<vector>
using namespace std;
typedef long double ldb;
typedef long long ll;

const ll MXN=1000005;
ll N,M;
ldb f[MXN][2];
ldb powM[MXN];//M^i
int main(){
    cin>>N>>M;
    powM[0]=1;for(ll i=1;i<=N;i++) powM[i]=powM[i-1]*M;

    f[0][0]=0;f[0][1]=1;
    ldb s_01=0,s_0j=0;
    ldb s_11=1,s_1j=0;
    for(ll i=1;i<=N;i++){
        f[i][0] = s_01*(M-2)*i/powM[i] + s_0j*(M-2)/powM[i]
                + s_11*(M-1)*i/powM[i] + s_1j*(M-1)/powM[i];
        f[i][1] = s_01      *i/powM[i] + s_0j      /powM[i];

        s_01 += f[i][0]*powM[i];
        s_0j += f[i][0]*powM[i]*i;
        s_11 += f[i][1]*powM[i];
        s_1j += f[i][1]*powM[i]*i;
    }
    ldb ans=N/powM[N]*M;
    for(ll x=1;x<N;x++)
        ans+=x*x/powM[x]*M*f[N-x][0];
    printf("%.5Lf",ans);
    return 0;
}

实际上是会炸精度的,懒得管了:p

原文地址:https://www.cnblogs.com/sun123zxy/p/bzoj2201circledp.html

时间: 2024-11-06 23:35:22

从《彩色圆环》一题探讨一类环上dp的解法的相关文章

tyvj 1342 教主泡嫦娥 环上DP

342 教主泡嫦娥 时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 2012年12月21日下午3点14分35秒,全世界各国的总统以及领导人都已经汇聚在中国的方舟上.但也有很多百姓平民想搭乘方舟,毕竟他们不想就这么离开世界,所以他们决定要么登上方舟,要么毁掉方舟. LHX教主听说了这件事之后,果断扔掉了手中的船票.在地球即将毁灭的那一霎那,教主自制了一个小型火箭,奔向了月球…… 教主登上月球之后才发现,他的女朋友忘记带到月球了,为此他哭了一个月.但细心的教

[提升性选讲] 树形DP进阶:一类非线性的树形DP问题(例题 BZOJ4403 BZOJ3167)

转载请注明原文地址:http://www.cnblogs.com/LadyLex/p/7337179.html 树形DP是一种在树上进行的DP相对比较难的DP题型.由于状态的定义多种多样,因此解法也五花八门,经常成为高水平考试的考点之一. 在树形DP的问题中,有这样一类问题:其数据范围相对较小,并且状态转移一般与两两节点之间的某些关系有关. 今天,我们就来研究一下这类型的问题,并且总结一种(相对套路的)解决大多数类型题的思路. 首先,我们用一道相对简单的例题来初步了解这个类型题的大致思路,以及一

HDU 4908 (杭电 BC #3 1002题)BestCoder Sequence(DP)

题目地址:HDU 4908 这个题是从m开始,分别往前DP和往后DP,如果比m大,就比前面+1,反之-1.这样的话,为0的点就可以与m这个数匹配成一个子串,然后左边和右边的相反数的也可以互相匹配成一个子串,然后互相的乘积最后再加上就行了.因为加入最终两边的互相匹配了,那就说明左右两边一定是偶数个,加上m就一定是奇数个,这奇数个的问题就不用担心了. 代码如下: #include <iostream> #include <stdio.h> #include <string.h&g

2014多校第一场J题 || HDU 4870 Rating(DP || 高斯消元)

题目链接 题意 :小女孩注册了两个比赛的帐号,初始分值都为0,每做一次比赛如果排名在前两百名,rating涨50,否则降100,告诉你她每次比赛在前两百名的概率p,如果她每次做题都用两个账号中分数低的那个去做,问她最终有一个账号达到1000分需要做的比赛的次数的期望值. 思路 :可以直接用公式推出来用DP做,也可以列出210个方程组用高斯消元去做. (1)DP1:离散化.因为50,100,1000都是50的倍数,所以就看作1,2,20.这样做起来比较方便. 定义dp[i]为从 i 分数到达i+1

POJ 1515 Street Directions --一道连通题的双连通和强连通两种解法

题意:将一个无向图中的双向边改成单向边使图强连通,问最多能改多少条边,输出改造后的图. 分析: 1.双连通做法: 双连通图转强连通图的算法:对双连通图进行dfs,在搜索的过程中就能按照搜索的方向给所有边定向,其中桥不能改造,只能保留双向边. 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <cstdlib> #includ

Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

D. Directed Roads ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1to n. There are n directed roads in the Udayland. i-th of them goes from town i to some other town 

poj 2947 Widget Factory(模7环上的高斯消元)

http://poj.org/problem?id=2947 大致题意: 有n种装饰物,m个已知条件,每个已知条件的描述如下: p start end a1,a2......ap (1<=ai<=n) 第一行表示从星期start到星期end一共生产了p件装饰物(工作的天数为end-start+1+7*x,加7*x是因为它可能生产很多周),第二行表示这p件装饰物的种类(可能出现相同的种类,即ai=aj).规定每件装饰物至少生产3天,最多生产9天.问每种装饰物需要生产的天数.如果没有解,则输出&q

环上的游戏

环上的游戏(cycle)有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流取数,取数的规则如下:(1)选择硬币左边或者右边的一条边,并且边上的数非0:(2)将这条边上的数减至任意一个非负整数(至少要有所减小):(3)将硬币移至边的另一端.如果轮到一个玩家走,这时硬币左右两边的边上的数值都是0,那么这个玩家就输了.如下图,描述的是Alice和Bob两人的对弈过

环上最大连续和

给定N,K以及一个环:A[1],A[2],A[3],...A[N],其中A[1]的左边是A[N]. 求该环上最大的连续子段和,要求选出的子段长度不超过K. 输入描述: 第一行两个整数N和K.接下来一行,N个整数表示A[i]. 输出描述: 输出题目要求的最大连续和. 求Max{sum[i]-sum[x]},单调队列维护sum[x]. code #include<cstdio> #include<iostream> #include<cstring> #include<