Introduction to Locking in SQL Server

Locking is a major part of every RDBMS and is important to know about. It is a database functionality which without a multi-user environment could not work. The main problem of locking is that in an essence it‘s a logical and not physical problem. This means that no amount of hardware will help you in the end. Yes you might cut execution times but this is only a virtual fix. In a heavy multi-user environment any logical problems will appear sooner or later.

Lock modes

All examples are run under the default READ COMMITED isolation level. Taken locks differ between isolation levels, however these examples are just to demonstrate the lock mode with an example. Here‘s a little explanation of the three columns from sys.dm_tran_locks used in the examples:

resource_type This tells us what resource in the database the locks are being taken on. It can be one of these values: DATABASE, FILE, OBJECT, PAGE, KEY, EXTENT, RID, APPLICATION, METADATA, HOBT, ALLOCATION_UNIT.
request_mode This tells us the mode of our lock.
resource_description This shows a brief description of the resource. Usually holds the id of the page, object, file, row, etc. It isn‘t populated for every type of lock

The filter on resource_type <> ‘DATABASE‘ just means that we don‘t want to see general shared locks taken on databases. These are always present. All shown outputs are from the sys.dm_tran_locks dynamic management view. In some examples it is truncated to display only locks relevant for the example. For full output you can run these yourself.

Shared locks (S)

Shared locks are held on data being read under the pessimistic concurrency model. While a shared lock is being held other transactions can read but can‘t modify locked data. After the locked data has been read the shared lock is released, unless the transaction is being run with the locking hint (READCOMMITTED, READCOMMITTEDLOCK) or under the isolation level equal or more restrictive than Repeatable Read. In the example you can‘t see the shared locks because they‘re taken for the duration of the select statement and are already released when we would select data from sys.dm_tran_locks. That is why an addition of WITH (HOLDLOCK) is needed to see the locks.

BEGIN TRAN

USE AdventureWorks

SELECT * FROM Person.Address WITH (HOLDLOCK)
WHERE AddressId = 2

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Update locks (U)

Update locks are a mix of shared and exclusive locks. When a DML statement is executed SQL Server has to find the data it wants to modify first, so to avoid lock conversion deadlocks an update lock is used. Only one update lock can be held on the data at one time, similar to an exclusive lock. But the difference here is that the update lock itself can‘t modify the underlying data. It has to be converted to an exclusive lock before the modification takes place. You can also force an update lock with the UPDLOCK hint:

BEGIN TRAN

USE AdventureWorks

SELECT * FROM Person.Address WITH (UPDLOCK)
WHERE AddressId < 2

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Exclusive locks (X)

Exclusive locks are used to lock data being modified by one transaction thus preventing modifications by other concurrent transactions. You can read data held by exclusive lock only by specifying a NOLOCK hint or using a read uncommitted isolation level. Because DML statements first need to read the data they want to modify you‘ll always find Exclusive locks accompanied by shared locks on that same data.

BEGIN TRAN

USE AdventureWorks

UPDATE Person.Address
SET AddressLine2 = ‘Test Address 2‘
WHERE AddressId = 5

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Intent locks (I)

Intent locks are a means in which a transaction notifies other transaction that it is intending to lock the data. Thus the name. Their purpose is to assure proper data modification by preventing other transactions to acquire a lock on the object higher in lock hierarchy. What this means is that before you obtain a lock on the page or the row level an intent lock is set on the table. This prevents other transactions from putting exclusive locks on the table that would try to cancel the row/page lock. In the example we can see the intent exclusive locks being placed on the page and the table where the key is to protect the data from being locked by other transactions.

BEGIN TRAN

USE AdventureWorks

UPDATE TOP(5) Person.Address
SET AddressLine2 = ‘Test Address 2‘
WHERE PostalCode = ‘98011‘

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Schema locks (Sch)

There are two types of schema locks:

  • Schema stability lock (Sch-S): Used while generating execution plans. These locks don‘t block access to the object data.
  • Schema modification lock (Sch-M): Used while executing a DDL statement. Blocks access to the object data since its structure is being changed.

In the example we can see the Sch-S and Sch-M locks being taken on the system tables and the TestTable plus a lot of other locks on the system tables.

BEGIN TRAN

USE AdventureWorks

CREATE TABLE TestTable (TestColumn INT)

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Bulk Update locks (BU)

Bulk Update locks are used by bulk operations when TABLOCK hint is used by the import. This allows for multiple fast concurrent inserts by disallowing data reading to other transactions.

Conversion locks

Conversion locks are locks resulting from converting one type of lock to another. There are 3 types of conversion locks:

  • Shared with Intent Exclusive (SIX). A transaction that holds a Shared lock also has some pages/rows locked with an Exclusive lock
  • Shared with Intent Update (SIU). A transaction that holds a Shared lock also has some pages/rows locked with an Update lock.
  • Update with Intent Exclusive (UIX). A transaction that holds an Update lock also has some pages/rows locked with an Exclusive lock.

In the example you can see the UIX conversion lock being taken on the page:

BEGIN TRAN

USE AdventureWorks

UPDATE TOP(5) Person.Address
SET AddressLine2 = ‘Test Address 2‘
WHERE PostalCode = ‘98011‘

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Key - Range locks

Key-range locks protect a range of rows implicitly included in a record set being read by a Transact-SQL statement while using the serializable transaction isolation level. Key-range locking prevents phantom reads. By protecting the ranges of keys between rows, it also prevents phantom insertions or deletions into a record set accessed by a transaction. In the example we can see that there are two types of key-range locks taken:

  • RangeX-X - exclusive lock on the interval between the keys and exclusive lock on the last key in the range
  • RangeS-U – shared lock on the interval between the keys and update lock on the last key in the range
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

USE AdventureWorks

UPDATE Person.Address
SET AddressLine2 = ‘Test Address 2‘
WHERE AddressLine1 LIKE ‘987 %‘

SELECT resource_type, request_mode, resource_description
FROM   sys.dm_tran_locks
WHERE  resource_type <> ‘DATABASE‘

ROLLBACK

Lock Granularity

Lock granularity consists of TABLE, PAGE and ROW locks. If you have a clustered index on the table then instead of a ROW lock you have a KEY lock. Locking on the lower level increases concurrency, but if a lot of locks are taken consumes more memory and vice versa for the higher levels. So granularity simply means the level at which the SQL Server locks data. Also note that the more restricted isolation level we choose, the higher the locking level to keep data in correct state. You can override the locking level by using ROWLOCK, PAGLOCK or TABLOCK hints but the use of these hints is discouraged since SQL Server know what are the appropriate locks to take for each scenario. If you must use them you should be aware of the concurrency and data consistency issues you might cause.

Spinlocks

Spinlocks are a light-weight lock mechanism that doesn‘t lock data but it waits for a short period of time for a lock to be free if a lock already exists on the data a transaction is trying to lock. It‘s a mutual exclusion mechanism to reduce context switching between threads in SQL Server.

Lock Compatibility Matrix

This is taken from http://msdn2.microsoft.com/En-US/library/ms186396.aspx. Also a good resource to have is a Lock Compatibility Matrix which tells you how each lock plays nice with other lock modes. It is one of those things you don‘t think you need up until the moment you need it.

Conclusion

Hopefully this article has shed some light on how SQL Server operates with locks and why is locking of such importance to proper application and database design and operation. Remember that locking problems are of logical and not physical nature so they have to be well thought out. Locking goes hand in hand with transaction isolation levels so be familiar with those too. In the next article I‘ll show some ways to resolve locking problems.

from:http://www.sqlteam.com/article/introduction-to-locking-in-sql-server

时间: 2024-11-29 03:32:20

Introduction to Locking in SQL Server的相关文章

SQL Server on Linux: How? Introduction: SQL Server Blog

SQL Server Blog Official News from Microsoft's Information Platform https://blogs.technet.microsoft.com/dataplatforminsider/2016/12/16/sql-server-on-linux-how-introduction/ This post was authored by Scott Konersmann, Partner Engineering Manager, SQL

SQL Server Debugging with WinDbg – an Introduction

Klaus Aschenbrenner Klaus Aschenbrenner provides independent SQL Server Consulting Services across Europe and the US. Klaus works with the .NET Framework and especially with the SQL Server 2005/2008 from the very beginnings. In the years 2004 - 2005

《Pro SQL Server Internals, 2nd edition》的CHAPTER 3 Statistics中的Introduction to SQL Server Statistics、Statistics and Execution Plans、Statistics Maintenance(译)

<Pro SQL Server Internals> 作者: Dmitri Korotkevitch 出版社: Apress出版年: 2016-12-29页数: 804定价: USD 59.99装帧: PaperbackISBN: 9781484219638 统计 SQL Server查询优化器在为查询选择执行计划时使用基于成本的模型.它估计不同执行计划的成本,并选择成本最低的一个.但是,请记住,SQL Server并不搜索查询可用的最佳执行计划,因为评估所有可能的替代方案在CPU方面都是耗时

Stairway to SQL Server Replication: Level 1 - Introduction to SQL Server Replication翻译,合并截图翻译

SQL Server复制的阶梯:第1级 -  SQL Server复制简介 网址:http://www.sqlservercentral.com/articles/Stairway+Series/72274/ 作者: Sebastian Meine, 2012/12/26 该系列介绍:本文是Stairway系列文章的一部分:SQL Server复制的阶梯 SQL复制可以解决运行数据库驱动的应用程序时的许多问题.发布/订阅者的模型并不容易理解,脚本和监视复制系统的复杂性需要一些思考.最后,这一系列

SQL Server 2008性能故障排查(一)——概论

原文:SQL Server 2008性能故障排查(一)--概论 备注:本人花了大量下班时间翻译,绝无抄袭,允许转载,但请注明出处.由于篇幅长,无法一篇博文全部说完,同时也没那么快全部翻译完,所以按章节发布.由于本人水平有限,翻译结果肯定存在问题,为了不造成误导,在每篇结尾处都附上原文,供大家参考,也希望能指出我的问题,以便改进.谢谢. 另外,本文写给稍微有经验的数据库开发人员或者DBA看,初学者可能会看不懂.在此请见谅 作者:Sunil Agarwal, Boris Baryshnikov, K

Java中的Date Time 与SQL Server 2005里的Datetime 之间的交互

Preface Environment:Platform: Windows XPLanguage: Java 1.5IDE: MyEclipse 6.0.1Database: SQL Server 2005 Enterprise en Introduction 本文主要讲述Java中的Date Time 与SQL Server 2005里的Datetime 如何进行交互.涉及到的Date Type有java.util.Datejava.sql.Datejava.sql.Timejava.sql.

P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1

P6 Professional Installation and Configuration Guide (Microsoft SQL Server Database) 16 R1       May 2016 Contents About This Guide...................................................................................... 11 Shared Topics in This Guide .

Debugging a SQL Server query with WinDbg

Debugging a SQL Server query with WinDbg May 13, 2014 · Klaus Aschenbrenner · 5 Comments (Be sure to checkout the FREE SQLpassion Performance Tuning Training Plan - you get a weekly email packed with all the essential knowledge you need to know about

SQL Server 2014如何提升非在线的在线操作

在今天的文章里,我想谈下在线索引重建操作( Online Index Rebuild operations),它们在SQL Server 2014里有怎样的提升.我们都知道,自SQL Server 2005开始引入了在线索引重建操作.但这些在线操作并非真正的在线操作,因为在操作开始时,SQL Server需要获得共享表锁(Shared Table Lock (S) ),在操作结束时需要在对应表上获得架构修改锁(Schema Modification Lock (Sch-M) ).因此这些操作是真