洛谷P1908 求逆序对 [归并排序]

题目描述

猫猫TOM和小老鼠JERRY最近又较量上了,但是毕竟都是成年人,他们已经不喜欢再玩那种你追我赶的游 戏,现在他们喜欢玩统计。最近,TOM老猫查阅到一个人类称之为“逆序对”的东西,这东西是这样定义的:对于给定的一段正整数序列,逆序对就是序列中 ai>aj且i<j的有序对。知道这概念后,他们就比赛谁先算出给定的一段正整数序列中逆序对的数目。

输入输出格式

输入格式:

第一行,一个数n,表示序列中有n个数。

第二行n个数,表示给定的序列。

输出格式:

给定序列中逆序对的数目。

输入输出样例

输入样例#1:

6
5 4 2 6 3 1

输出样例#1:

11

说明

对于50%的数据,n≤2500

对于100%的数据,n≤40000。

复习一下归并排序

 1 /**/
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cmath>
 5 #include<cstring>
 6 #include<algorithm>
 7 using namespace std;
 8 int n;
 9 int a[50000];
10 int t[50000];//临时存储
11 int ans=0;
12 void msort(int l,int r){
13     if(r-l>1)
14     {
15         int mid=l+(r-l)/2;
16         msort(l,mid);
17         msort(mid,r);
18         int p=l,q=mid,i=l;//指向起点
19         while(p<mid || q<r){//范围内有数就继续处理
20             if(q>=r || (p<mid && a[p]<=a[q]))
21             {
22                 t[i++]=a[p++];
23             }
24             else {t[i++]=a[q++];ans+=mid-p;};
25         }
26         for(i=l;i<r;i++)a[i]=t[i];//用排序后的序列覆盖原数组对应部分
27     }
28     return;
29 }
30 int main(){
31     scanf("%d",&n);
32     int i,j;
33     for(i=1;i<=n;i++)scanf("%d",&a[i]);
34     msort(1,n+1);
35     printf("%d\n",ans);
36     return 0;
37 }
时间: 2024-11-04 11:16:42

洛谷P1908 求逆序对 [归并排序]的相关文章

洛谷P1521 求逆序对 题解

题意: 求1到n的全排列中有m对逆序对的方案数. 思路: 1.f[i][j]表示1到i的全排列中有j对逆序对的方案数. 2.显然,1到i的全排列最多有(i-1)*i/2对逆序对,而对于f[i][j]来说,新加入一个数i+1,产生的新的逆序对数与插入的位置有关(数目为插入的数的位置之后的数的数目),于是n^4暴力就新鲜出炉了. 3.换一个角度来说,当i>j的时候,我们枚举i的全排列的第一位的数字,如果是1,那么就要求剩下i-1个数中有j个全排列,如果是2,要求剩下i-1个数中有i-2个 全排列,依

洛谷P2513 [HAOI2009]逆序对数列

P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样自然数数列到底有多少个? 输入输出格式 输入格式: 第一行为两个整数n,k. 输出格式: 写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果. 输入输出样例 输入样例#1: 4 1 输出样例#1: 3 说明 样例说明:

【洛谷P2513】逆序对数列

前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到j 所以我们得到:f[i][j]=sum(f[i-1][j...j-i]) 所以我们可以通过前缀和优化j 滚动数组消去 i 的一维 这样时间复杂度由n^2k变为nk,空间由nk变为k 1 #include<cstdio> 2 #include<cstring> 3 using name

归并排序求逆序对 //(洛谷)U4566 赛车比赛

https://www.luogu.org/problem/show?pid=U4566 显然的逆序对,以前只是嘴巴ac,这次终于打了出来. 逆序对其实就是冒泡排序的排序次数....但是一般的排序时间复杂度为O(n^2),于是都会想到归并排序... 一.二路归并 已知两个有序数组,将其归并为一个有序数组 很显然,将首元素比较,小的扔进目的数组,最后把剩下的扔进去.. 1 int a[n],b[m],tmp[n+m]; 2 int i=1,j=1,k=1; 3 while(i<=n&&

洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的殿堂”.小FF猜想里面应该就有王室的遗产了.但现在的问题是如何打开这扇门…… 仔细研究后,他发现门上的图案大概是说:古代人认为只有智者才是最容易接近神明的.而最聪明的人往往通过一种仪式选拔出来.仪式大概是指,即将隐退的智者为他的候选人写下一串无序的数字,并让他们进行一种操作,即交换序列中相邻的两个元

归并排序+归并排序求逆序对(例题P1908)

归并排序(merge sort) 顾名思义,这是一种排序算法,时间复杂度为O(nlogn),时间复杂度上和快排一样 归并排序是分治思想的应用,我们先将n个数不断地二分,最后得到n个长度为1的区间,显然,这n个小区间都是单调的,随后合并相邻的两个区间,得到n/2个单增(减)的区间,随后我们继续合并相邻的两个区间,得到n/4个单增(减)的区间.... 每次合并操作的总时间复杂度为O(n),logn次合并用时O(logn),故总时间复杂度为O(nlogn) 合并操作比较好理解,就像下图这样二分区间即可

归并排序求逆序对

归并排序求逆序对 by mps [1]什么是逆序对? 对于一个数列需要按从小到大排序,如果有ai,aj且满足ai>aj和i<j则ai,aj为一组逆序对 [2]如何求逆序对? 我们发现,我们可以暴力枚举i,j,然后逐一判断并累加答案即可,时间复杂度O(N2)        但是对于数据量大一点的题目,只有不断地TLE了→_→ [3]归并排序求逆序对 逆序对的定义(见[1])是一组本应该有序的序列中的逆序对,那么我们就想到了排序,但由于是要22匹配,我们又想到了归并排序 归并排序大致内容如下: 将

HDU 3743 Frosh Week(归并排序求逆序对)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3743 题目意思就是给你一个长为n的序列,让你求逆序对.我用的是归并排序来求的.归并排序有一个合并的过程,分前后两段,当a[i] > a[j]时,说明a[j]比前面那段啊[i],a[i+1],a[i+2]....,a[mid],比这些都要小,所以总逆序对数要加上mid-i+1. 1 // File Name: HDU3743.cpp 2 // Author: xiaxiaosheng 3 // Cre

归并排序,树状数组 两种方法求逆序对

我们知道,求逆序对最典型的方法就是树状数组,可是另一种方法就是Merge_sort(),即归并排序. 实际上归并排序的交换次数就是这个数组的逆序对个数,为什么呢? 我们能够这样考虑: 归并排序是将数列a[l,h]分成两半a[l,mid]和a[mid+1,h]分别进行归并排序,然后再将这两半合并起来. 在合并的过程中(设l<=i<=mid,mid+1<=j<=h).当a[i]<=a[j]时.并不产生逆序数:当a[i]>a[j]时.在 前半部分中比a[i]大的数都比a[j]