Dense Semantic Correspondence


方法名称


度量相似性的方法


相似性的层面


针对问题


Canonical correspondence


(dis-)similarity metrics


raw pixel intensities


the same underlying scene,brightness   constancy assumption


Improved canonical correspondence


Robust (dis-)similarity metrics


raw pixel intensities


the same underlying scene,non-rigid   deformations、occlu-

sions、non-global intensity、constrast and colorimet-

ric changes


semantic correspondence

(SIFT Flow)


L1 metric


sparse keypoint

matching,dense SIFT space(sacri
  ces some localization accuracy)


across scenes


Ours


Per pixel classifiers


raw pixel intensities(Dense)


across scenes

时间: 2024-12-15 01:51:06

Dense Semantic Correspondence的相关文章

CVPR 2017 Paper list

CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro

常用图像数据集大全

1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑.机械.风景.运动等类别,总数高达2,836,535张图片.对于每张图片,数据集中给出了图片的原图.缩略图.所在网页以及所在网页中的相关文本.200多G 2 http://www.imageclef.org/ IMAGECLEF致力于位图片相关领域提供一个基准(检索.分类.标注等等) Cross Language Eva

image registration——————图像配准

(1)background:  Image registration:  the process of overlaying two or more images of the same scene taken at different times  from different viewpoints, and/or by different sensors. It geometrically aligns two images—the reference and sensed images 中

人脸三维建模A Morphable Model For The Synthesis Of 3D Faces(三维人脸合成的变形模型)

Abstract摘要 In this paper, a new technique for modeling textured 3D faces is introduced. 3D faces can either be generated automatically from one or more photographs, or modeled directly through an intuitive user interface. Users are assisted in two ke

Fully Convolutional Networks for semantic Segmentation(深度学习经典论文翻译)

摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完

RCNN学习笔记(8):Fully Convolutional Networks for Semantic Segmentation(全卷积网络FCN)

[论文信息] <Fully Convolutional Networks for Semantic Segmentation> CVPR 2015 best paper Reference link: http://blog.csdn.net/tangwei2014 http://blog.csdn.net/u010025211/article/details/51209504 概览&主要贡献 提出了一种end-to-end的做semantic segmentation的方法,简称FC

论文笔记《Fully Convolutional Networks for Semantic Segmentation》

<Fully Convolutional Networks for Semantic Segmentation>,CVPR 2015 best paper,pixel level, fully supervised. 主要思路是把CNN改为FCN,输入一幅图像后直接在输出端得到dense prediction,也就是每个像素所属的class,从而得到一个end-to-end的方法来实现image  semantic segmentation. 我们已经有一个CNN模型,首先要把CNN的全连接层

【论文笔记】A Review on Deep Learning Techniques Applied to Semantic Segmentation

A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Introduction: 语义分割是计算机视觉当中非常重要的一个课题,其广泛的应用于各种类型的数据,如:2D image,video,and even 3D or volumetric data. 最近基于 deep learning 的方法,取得了非常巨大的进展,在语义分割上也是遥遥领先于传统算法. 本

语义分割(semantic segmentation) 常用神经网络介绍对比-FCN SegNet U-net DeconvNet,语义分割,简单来说就是给定一张图片,对图片中的每一个像素点进行分类;目标检测只有两类,目标和非目标,就是在一张图片中找到并用box标注出所有的目标.

from:https://blog.csdn.net/u012931582/article/details/70314859 2017年04月21日 14:54:10 阅读数:4369 前言 在这里,先介绍几个概念,也是图像处理当中的最常见任务. 语义分割(semantic segmentation) 目标检测(object detection) 目标识别(object recognition) 实例分割(instance segmentation) 语义分割 首先需要了解一下什么是语义分割(s