堆排序详解

堆排序快速排序归并排序一样都是时间复杂度为O(N*logN)的几种常见排序方法。学习堆排序前,先讲解下什么是数据结构中的二叉堆。

二叉堆的定义

二叉堆是完全二叉树或者是近似完全二叉树。

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

堆的操作——插入删除

下面先给出《数据结构C++语言描述》中最小堆的建立插入删除的图解,再给出本人的实现代码,最好是先看明白图后再去看代码。

堆的插入

每次插入都是将新数据放在数组最后。可以发现从这个新数据的父结点到根结点必然为一个有序的数列,现在的任务是将这个新数据插入到这个有序数据中——这就类似于直接插入排序中将一个数据并入到有序区间中,对照《白话经典算法系列之二 直接插入排序的三种实现》不难写出插入一个新数据时堆的调整代码:

[cpp] view plain copy

  1. //  新加入i结点  其父结点为(i - 1) / 2
  2. void MinHeapFixup(int a[], int i)
  3. {
  4. int j, temp;
  5. temp = a[i];
  6. j = (i - 1) / 2;      //父结点
  7. while (j >= 0 && i != 0)
  8. {
  9. if (a[j] <= temp)
  10. break;
  11. a[i] = a[j];     //把较大的子结点往下移动,替换它的子结点
  12. i = j;
  13. j = (i - 1) / 2;
  14. }
  15. a[i] = temp;
  16. }

更简短的表达为:

[cpp] view plain copy

  1. void MinHeapFixup(int a[], int i)
  2. {
  3. for (int j = (i - 1) / 2; (j >= 0 && i != 0)&& a[i] > a[j]; i = j, j = (i - 1) / 2)
  4. Swap(a[i], a[j]);
  5. }

插入时:

[cpp] view plain copy

  1. //在最小堆中加入新的数据nNum
  2. void MinHeapAddNumber(int a[], int n, int nNum)
  3. {
  4. a[n] = nNum;
  5. MinHeapFixup(a, n);
  6. }

堆的删除

按定义,堆中每次都只能删除第0个数据。为了便于重建堆,实际的操作是将最后一个数据的值赋给根结点,然后再从根结点开始进行一次从上向下的调整。调整时先在左右儿子结点中找最小的,如果父结点比这个最小的子结点还小说明不需要调整了,反之将父结点和它交换后再考虑后面的结点。相当于从根结点将一个数据的“下沉”过程。下面给出代码:

[cpp] view plain copy

  1. //  从i节点开始调整,n为节点总数 从0开始计算 i节点的子节点为 2*i+1, 2*i+2
  2. void MinHeapFixdown(int a[], int i, int n)
  3. {
  4. int j, temp;
  5. temp = a[i];
  6. j = 2 * i + 1;
  7. while (j < n)
  8. {
  9. if (j + 1 < n && a[j + 1] < a[j]) //在左右孩子中找最小的
  10. j++;
  11. if (a[j] >= temp)
  12. break;
  13. a[i] = a[j];     //把较小的子结点往上移动,替换它的父结点
  14. i = j;
  15. j = 2 * i + 1;
  16. }
  17. a[i] = temp;
  18. }
  19. //在最小堆中删除数
  20. void MinHeapDeleteNumber(int a[], int n)
  21. {
  22. Swap(a[0], a[n - 1]);
  23. MinHeapFixdown(a, 0, n - 1);
  24. }

堆化数组

有了堆的插入和删除后,再考虑下如何对一个数据进行堆化操作。要一个一个的从数组中取出数据来建立堆吧,不用!先看一个数组,如下图:

很明显,对叶子结点来说,可以认为它已经是一个合法的堆了即20,60, 65, 4, 49都分别是一个合法的堆。只要从A[4]=50开始向下调整就可以了。然后再取A[3]=30,A[2] = 17,A[1] = 12,A[0] = 9分别作一次向下调整操作就可以了。下图展示了这些步骤:

写出堆化数组的代码:

[cpp] view plain copy

  1. //建立最小堆
  2. void MakeMinHeap(int a[], int n)
  3. {
  4. for (int i = n / 2 - 1; i >= 0; i--)
  5. MinHeapFixdown(a, i, n);
  6. }

至此,堆的操作就全部完成了(注1),再来看下如何用堆这种数据结构来进行排序。

堆排序

首先可以看到堆建好之后堆中第0个数据是堆中最小的数据。取出这个数据再执行下堆的删除操作。这样堆中第0个数据又是堆中最小的数据,重复上述步骤直至堆中只有一个数据时就直接取出这个数据。

由于堆也是用数组模拟的,故堆化数组后,第一次将A[0]与A[n - 1]交换,再对A[0…n-2]重新恢复堆。第二次将A[0]与A[n – 2]交换,再对A[0…n - 3]重新恢复堆,重复这样的操作直到A[0]与A[1]交换。由于每次都是将最小的数据并入到后面的有序区间,故操作完成后整个数组就有序了。有点类似于直接选择排序

[cpp] view plain copy

  1. void MinheapsortTodescendarray(int a[], int n)
  2. {
  3. for (int i = n - 1; i >= 1; i--)
  4. {
  5. Swap(a[i], a[0]);
  6. MinHeapFixdown(a, 0, i);
  7. }
  8. }

注意使用最小堆排序后是递减数组,要得到递增数组,可以使用最大堆。

由于每次重新恢复堆的时间复杂度为O(logN),共N - 1次重新恢复堆操作,再加上前面建立堆时N / 2次向下调整,每次调整时间复杂度也为O(logN)。二次操作时间相加还是O(N * logN)。故堆排序的时间复杂度为O(N * logN)。STL也实现了堆的相关函数,可以参阅《STL系列之四 heap 堆》。

注1 作为一个数据结构,最好用类将其数据和方法封装起来,这样即便于操作,也便于理解。此外,除了堆排序要使用堆,另外还有很多场合可以使用堆来方便和高效的处理数据,以后会一一介绍。

时间: 2024-09-28 19:01:21

堆排序详解的相关文章

插入排序,希尔排序,堆排序详解

本文将介绍三种排序算法--插入排序,希尔排序,堆排序.本文所有例子都是使用升序 一.插入排序 算法思想 维护一个有序数组,将要插入的数据与有序数组自最后一个元素直到合适位置的数一一比较. eg: 有序数组:1,3,5,6,7   现在待插入数据为2,那么他将会和7,6,5,3,依次作比较,当带插入数据小于有序数组最后的元素大小,则将该元素后移,直到待插入元素找到合适位置为止. 代码实现 void InsertSort(int* a, int size) 02 { 03     assert(a)

经典排序之堆排序详解

堆排序 一.概述 首先我们来看看什么叫做堆排序? 若在输出堆顶的最小值之后,使得剩余的n-1个元素的序列重新又构成一个堆,则得到n个元素中的次小值,如此反复,便能得到一个有序序列,称这个过程为堆排序. 再来看看总结一下基本思想: 将无序序列建成一个堆 输出堆顶的最小(大)值 使剩余的n-1个元素又调整成一个堆,则可得到n个元素的次小值 重复执行,得到一个有序序列 通过上面的规律发现两个问题,而堆排序需要解决这两个问题:1.如何建堆? 2.如何调整? 二.如何建堆 1.什么是堆? n个元素的序列{

20160214.CCPP体系详解(0024天)

程序片段(01):CGI.c 内容概要:CGI-cloud #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> int main01(void) { printf("Content-Type:text/html \n\n"); printf("周瑞富很富,吴伟很帅,刘海华很高!并称高富帅! <br />"); printf("周瑞富很富,吴伟很帅,刘海华很高!并称高富帅! <b

Heapsort 堆排序算法详解(Java实现)

Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择对这个算法进行分析主要是因为它用到了一个非常有意思的算法技巧:数据结构 - 堆.而且堆排其实是一个看起来复杂其实并不复杂的排序算法,个人认为heapsort在机器学习中也有重要作用.这里重新详解下关于Heapsort的方方面面,也是为了自己巩固一下这方面知识,有可能和其他的文章有不同的入手点,如有错

数据结构 - 堆排序(heap sort) 详解 及 代码(C++)

堆排序(heap sort) 详解 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包含两个步骤: 第一步: 是建立大顶堆(从大到小排序)或小顶堆(从小到大排序), 从下往上建立; 如建堆时, s是从大到小; 第二步: 是依次交换堆顶和堆底, 并把交换后的堆底输出, 只排列剩余的堆, 从上往下建立; 如构造时, s始终是1; 代码: /* * main.cpp * * Created on: 2014.6.12 * Author: S

(转)详解八大排序算法

概述 排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 我们这里说说八大排序就是内部排序. 当n较大,则应采用时间复杂度为O(nlog2n)的排序方法:快速排序.堆排序或归并排序序. 快速排序:是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短: 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到

数据结构 - 归并排序(merging sort) 详解 及 代码

归并排序(merging sort) 详解 及 代码 本文地址: http://blog.csdn.net/caroline_wendy 归并排序(merging sort): 包含2-路归并排序, 把数组拆分成两段, 使用递归, 将两个有序表合成一个新的有序表. 归并排序(merge sort)的时间复杂度是O(nlogn), 实际效果不如快速排序(quick sort)和堆排序(heap sort), 但是归并排序是稳定排序, 而快速排序和堆排序则不是. 代码: /* * main.cpp

javascript常用经典算法实例详解

javascript常用经典算法实例详解 这篇文章主要介绍了javascript常用算法,结合实例形式较为详细的分析总结了JavaScript中常见的各种排序算法以及堆.栈.链表等数据结构的相关实现与使用技巧,需要的朋友可以参考下 本文实例讲述了javascript常用算法.分享给大家供大家参考,具体如下: 入门级算法-线性查找-时间复杂度O(n)--相当于算法界中的HelloWorld ? 1 2 3 4 5 6 7 8 9 10 //线性搜索(入门HelloWorld) //A为数组,x为要

13种排序算法详解

0.前言 从这一部分开始直接切入我们计算机互联网笔试面试中的重头戏算法了,初始的想法是找一条主线,比如数据结构或者解题思路方法,将博主见过做过整理过的算法题逐个分析一遍(博主当年自己学算法就是用这种比较笨的刷题学的,囧),不过又想了想,算法这东西,博主自己学的过程中一直深感,基础还是非常重要的,很多难题是基础类数据结构和题目的思想综合发散而来.比如说作为最基本的排序算法就种类很多,而事实上笔试面试过程中发现掌握的程度很一般,有很多题目,包括很多算法难题,其母题或者基本思想就是基于这些经典算法的,