[再寄小读者之数学篇](2014-05-30 对数不等式)

(对数不等式)

x1+x≤ln(1+x)≤x(x>?1),

等号当且仅当 x=0

时成立.

时间: 2024-08-05 21:30:32

[再寄小读者之数学篇](2014-05-30 对数不等式)的相关文章

再寄小读者之数学篇[2014.07.01-2014.12.31]

[再寄小读者之数学篇](2014-07-09 多项式的辗转相除与线性变换) 设 $V$ 是由次数不超过 $4$ 的一切实系数一元多项式组成的向量空间. 对于 $V$ 上的任意多项式 $f(x)$, 以 $x^2-1$ 除 $f(x)$ 所得的商式及余式分别为 $q(x)$ 和 $r(x)$, 记 $$\bex f(x)=q(x)(x^2-1)+r(x). \eex$$ 设 $\scrA$ 是 $V$ 到 $V$ 的映射, 使得 $$\bex \scrA(f(x))=r(x). \eex$$ 试证

再寄小读者之数学篇[2014.01.01-2014.06.30]

[再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛) 设 $f\in L(\bbR)$, 试证: $$\bex \vsm{n}f(n^2x) \eex$$ 在 $\bbR$ 上几乎处处收敛到一 Lebesgue 函数. [再寄小读者之数学篇](2014-06-27 向量公式: The Hall term) $$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot

[再寄小读者之数学篇](2014-05-27 二阶矩阵的不等式)

(来自质数) 设A,B 都是实数域上的两个二阶方阵, 且 AB=BA .  证明:对于任意实数 x,y,z ,有 4xzdet(xA2+yAB+zB2)≥(4xz?y2)(xdet(A)?zdet(B))2 证明: (来自 torsor) 因为 A,B 可交换, 所以在复数域上它们可以同时上角化. 这一结论可以参考复旦高代教材第六章总复习题18, 注意 A,B 的特征值一般是复数, 所以这一结论一般来说只能在复数域上成立. 设 P 为二阶可逆复方阵, 使得 P?1AP=[λ10?λ2],P?1B

[再寄小读者之数学篇](2014-06-18 积分、微分不等式)

设 $f$ 为 $[0,1]$ 上的连续正函数, 且 $\dps{f^2(t)\leq 1+2\int_0^t f(s)\rd s}$. 证明: $f(t)\leq 1+t$. 证明: 设 $\dps{F(t)=\int_0^t f(s)\rd s}$, 则 $F(0)=0$, 且 $$\beex \bea F'^2(t)&\leq 1+2F(t),\\ \cfrac{\rd F(t)}{\sqrt{1+2F(t)}}&\leq \rd t,\\ \sqrt{1+2F(t)}-\sqrt{

[再寄小读者之数学篇](2014-06-20 求极限---Jordan 不等式的应用)

证明: 当 $\lm<1$ 时, $\dps{\lim_{R\to+\infty} R^\lm\int_0^{\pi/2} e^{-R\sin\tt}\rd \tt=0}$. 证明: 由 $$\beex \bea 0\leq R^\lm\int_0^{\pi/2} e^{-R\sin\tt}\rd \tt &\leq R^\lm \int_0^{\pi/2} e^{-R \frac{2}{\pi}\tt}\rd \tt\\ &=R^\lm \sex{-\frac{\pi}{2R}e^

[再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式)

设函数 $f$ 在 $[0,1]$ 上有连续的二阶导数且 $f(0)=f(1)=0$, 但 $f(x)$ 在 $[0,1]$ 上不恒等于零. 证明: $$\bex |f(x)|\leq \cfrac{1}{4}\int_0^1 |f''(x)|\rd x,\quad \forall\ x\in [0,1]. \eex$$ [再寄小读者之数学篇](2014-06-14 [四川师范大学 2014 年数学分析考研试题] 积分不等式),布布扣,bubuko.com

[再寄小读者之数学篇](2014-06-23 Bernstein&#39;s inequality)

$$\bex \supp \hat u\subset \sed{2^{j-2}\leq |\xi|\leq 2^j} \ra \cfrac{1}{C}2^{jk}\sen{f}_{L^p} \leq \sen{D^k f}_{L^p}\leq C2^{jk} \sen{f}_{L^p}; \eex$$ $$\bex \supp \hat u\subset \sed{|\xi|\leq 2^j} \ra \sen{f}_{L^q}\leq C2^{jn\sex{\frac{1}{p}-\frac{

[再寄小读者之数学篇](2014-06-26 Besov space estimates)

(1) $$\bex \sen{D^k f}_{\dot B^s_{p,q}}\sim \sen{f}_{\dot B^{s+k}_{p,q}}. \eex$$ (2) $$\beex \bea &\quad s>0,\ q\in [1,\infty],\quad p_1,r_1\in [1,\infty],\ \cfrac{1}{p}=\cfrac{1}{p_1}+\cfrac{1}{p_2}=\cfrac{1}{r_1}+\cfrac{1}{r_2}\\ &\ra \sen{fg

[再寄小读者之数学篇](2014-06-26 Logarithmical Sobolev inequality using BMO space)

$$\bex q>3\ra \sen{\n f}_{L^\infty} \leq C(q)\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2}\sex{e+\sen{\n f}_{W^{1,q}}+\sen{f}_{L^\infty}} }. \eex$$ $$\bex m\geq 3\ra \sen{\n f}_{L^\infty}\leq C\sez{ 1+\sen{\n f}_{BMO} \ln^\frac{1}{2} \sex{1+\sen{\n f}_{H^

[再寄小读者之数学篇](2014-06-27 向量公式: The Hall term)

$$\bex \n\cdot{\bf b}=0\ra \n\times [(\n\times {\bf b})\times {\bf b}]=\n\times [\n\cdot ({\bf b}\otimes {\bf b})]. \eex$$ 证明: 右端第一个分量为 $$\beex \bea &\quad \sum_i \p_2(\p_i(b_ib_3))-\p_3(\p_i(b_ib_2))\\ &=\sum_i \p_2(b_i\p_ib_3)-\p_3(b_i\p_ib_2)\\