Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3903 Accepted Submission(s): 1537
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No 注意。注意,注意,取边,用字符串,不然超时!!!#include<stdio.h> #include<iostream> #include<algorithm> using namespace std; #include<string.h> #include<queue> #define N 2010 struct line { int u,v,next; }edge[N*N]; int n,m,inde[N],head[N],top=0; void add(int u,int v) { edge[top].u =u; edge[top].v =v; edge[top].next =head[u]; head[u]=top++; inde[v]++; } void topo() { int i,j,t=0,k=0,s; queue<int>Q; for(i=0;i<n;i++) { if(inde[i]==0)//入度为零入队 { Q.push(i); } } while(!Q.empty() ) { t=Q.front() ; Q.pop() ; inde[t]=-1; k++;//记录入队人数 for(i=head[t];i!=-1;i=edge[i].next ) { s=edge[i].v ; inde[s]--; if(inde[s]==0) Q.push(s); } } if(k<n)//判断是否有环 printf("Yes\n"); else printf("No\n"); } int main() { int i,j,u,v=1; scanf("%d",&m); while(m--) { top=0; memset(inde,0,sizeof(inde)); memset(head,-1,sizeof(head)); scanf("%d",&n); getchar(); char a[N]; for(i=0;i<n;i++)//必须用字符串,直接取数字超时 { scanf("%s",a); for(j=0;j<n;j++) { if(a[j]=='1') add(i,j); } } printf("Case #%d: ",v++); topo(); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。