Hbase Rowkey设计原则

Hbase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这三个维度可以对HBase中的数据进行快速定位。

Hbase中Rowkey可以唯一标识一行记录,在Hbase查询的时候,有以下几种方式:

  1、通过get方式,指定rowkey获取唯一一条记录

  2、通过scan方式,设置StartRow和EndRow参数进行范围匹配

  3、全表扫描,即直接扫描整张表中所有行记录

Rowkey长度原则

rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[] 形式保存,一般设计成定长。

建议越短越好,不要超过16个字节,原因如下:

  1. 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
  2. MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
  3. 目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性。

rowkey散列原则

如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

rowkey唯一原则

必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

什么是热点

HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。 热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。

为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。

常见的避免热点的方法以及它们的优缺点:

1、盐析

在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。

2、哈希

哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据

3、反转

第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题

4、时间戳反转

一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key][reverse_timestamp] , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。

比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计

[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]

如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间]

5、建表时进行预分区处理

原文地址:https://www.cnblogs.com/yfb918/p/10600898.html

时间: 2024-10-10 03:23:39

Hbase Rowkey设计原则的相关文章

Hbase中rowkey设计原则

Hbase中rowkey设计原则 1.热点问题 在某一时间段,有大量的数据同时对一个region进行操作 2.原因 对rowkey的设计不合理 对rowkey的划分不合理 3.解决方式 rowkey是hbase的读写唯一标识 最大长度是64KB. 4.核心原则 设计必须按照业务需求进行设计 5.长度原则 经验:10~100字节可以 官方:16字节,因为操作系统时8字节进行存储 6.散列原则 划分region是按照rowkey的头部进行划分. 有几种方式: )组合字段 id+timestamp )

Hbase rowkey设计一

转自 http://blog.csdn.net/lifuxiangcaohui/article/details/40621067 hbase所谓的三维有序存储的三维是指:rowkey(行主键),column key(columnFamily+qualifier),timestamp(时间戳)三部分组成的三维有序存储. 1.rowkey,我们知道rowkey是行的主键,而且hbase只能用个rowkey,或者一个rowkey范围即scan来查找数据.所以 rowkey的设计是至关重要的,关系到你应

HBase学习(十八)Hbase rowkey设计一

hbase所谓的三维有序存储的三维是指:rowkey(行主键),column key(columnFamily+qualifier),timestamp(时间戳)三部分组成的三维有序存储. 1.rowkey,我们知道rowkey是行的主键,而且hbase只能用个rowkey,或者一个rowkey范围即scan来查找数据.所以 rowkey的设计是至关重要的,关系到你应用层的查询效率.我们知道,rowkey是以字典顺序排序的.而存储的字节码,字典排序,我们知道,如果是字 母,那就是字母的顺序,比如

rowkey设计原则

rowkey是什么? rowkey相当于mysql.orcale中的主键,用于标识唯一的行,是完全由用户指定的一串不重复的字符串,hbase的数据永远都是根据rowkey的字典顺序排序的. Rowkey的作用 1)读写数据时通过rowkey找到对应region:2)MenStore中数据按rowkey排序:3)HFile中数据按rowkey排序. rowkey对region的影响: hbase的表数据是根据rowkey划分到不同的region,不合理的rowkey会导致热点问题.热点问题就是大量

Hbase Rowkey设计

因为一直在做hbase的应用层面的开发,所以体会的比较深的一点是hbase的表结构设计会对系统的性能以及开销上造成很大的区别,本篇文章先按照hbase表中的rowkey.columnfamily.column.timestamp几个方面进行一些分析.最后结合分析如何设计一种适合应用的高效表结构. 1.表的属性 (1)最大版本数:通常是3,如果对于更新比较频繁的应用完全可以设置为1,能够快速的淘汰无用数据,对于节省存储空间和提高查询速度有效果.不过这类需求在海量数据领域比较小众. (2)压缩算法:

HBase rowkey设计实例

需求:绘制渠道用户的每日趋势(每分钟一组数据一天1440组,2000+个渠道,区分新/老用户,2*1440*2000+=576万+/每天),需要保存90天. 查询条件:渠道号.新or老用户.日期 rowkey:渠道_日期_新or老用户_小时分钟(hhmm) 连接HBase from thrift.protocol import TBinaryProtocol from thrift.transport import TSocket from thrift.transport import TTr

Habse中Rowkey的设计原则——通俗易懂篇

Hbase的Rowkey设计原则 一. Hbase介绍 HBase -> Hadoop Database,HBase是Apache的Hadoop项目的子项目.HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式,主要用来存储非结构化和半结构化的松散数据(列存NoSQL数据库) 二. 设计原则 2.1 Rowkey长度原则 Rowkey是一个二进制码流,Rowkey的长度被很多开发者建议设计在10-100个字节,不过建议是越短

HBase的rowkey设计(含实例)

转自:http://www.aboutyun.com/thread-7119-1-1.html 对于任何系统的数据设计,我们都想提高性能,达到资源最大化利用,那么对于hbase我们产生如下问题: 1.hbase rowkey设计如何才能提高性能?2.hbase rowkey如何设计才能散列到不同的节点上? 访问hbase table中的行,只有三种方式: 1 通过单个row key访问2 通过row key的range3 全表扫描 文中可能涉及到的API: Hadoop/HDFS:http://

HBase的RowKey设计

HBase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位. HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有两种方式: 通过get方式,指定rowkey获取唯一一条记录 通过scan方式,设置startRow和stopRow参数进行范围匹配 全表扫描,即直接扫描整张表中所有行记录 rowkey长度原则 rowkey是一个二进制码