传送门
考虑用 \(segment~tree~beats\) 那一套理论,维护区间最小值 \(mn\) 和严格次小值 \(se\)
那么可以直接 \(mlog^2n\) 维护前三个操作
考虑维护历史最小值,先维护历史最小标记
写了写发现 \(max\) 那个修改不好操作
对于 \(max\) 操作来说,只会在 \(mn< v <se\) 的时候打上标记
这就相当于区间内等于 \(mn\) 的权值都要变成 \(v\)
那么 \(max\) 操作就可以变成对区间最小值的加法操作
而 \(v<se\),这样就可以非常方便维护历史最小值了
具体来说,维护下面几个标记
- 区间最小值的加法标记
- 区间其它值的加法标记
- 区间最小值的历史最小的加法标记
- 区间其它值的历史最小的加法标记
下放的时候判断一下是否是区间最小值就好了
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
namespace IO {
const int maxn(1 << 21 | 1);
char obuf[maxn], ibuf[maxn], *iS, *iT, c, *oS = obuf, *oT = obuf + maxn - 1, st[60];
int f, tp;
inline char Getc() {
return iS == iT ? (iT = (iS = ibuf) + fread(ibuf, 1, maxn, stdin), (iS == iT ? EOF : *iS++)) : *iS++;
}
template <class Int> inline void In(Int &x) {
for (c = Getc(), f = 1; c < '0' || c > '9'; c = Getc()) f = c == '-' ? -1 : 1;
for (x = 0; c >= '0' && c <= '9'; c = Getc()) x = (x << 1) + (x << 3) + (c ^ 48);
x *= f;
}
inline void Flush() {
fwrite(obuf, 1, oS - obuf, stdout);
oS = obuf;
}
inline void Putc(char c) {
*oS++ = c;
if (oS == oT) Flush();
}
template <class Int> inline void Out(Int x) {
if (x < 0) Putc('-'), x = -x;
if (!x) Putc('0');
while (x) st[++tp] = x % 10 + '0', x /= 10;
while (tp) Putc(st[tp--]);
}
}
using IO :: In;
using IO :: Out;
using IO :: Putc;
using IO :: Flush;
const int maxn(2e6 + 5);
const int inf(2e9);
struct Min {
int mn1, mn2;
inline Min operator +(Min b) const {
Min c;
c.mn1 = min(mn1, b.mn1), c.mn2 = min(mn2, b.mn2);
if (b.mn1 ^ c.mn1) c.mn2 = min(c.mn2, b.mn1);
if (mn1 ^ c.mn1) c.mn2 = min(c.mn2, mn1);
return c;
}
};
Min mn[maxn];
int n, m, hmn[maxn], addmn1[maxn], addmn2[maxn], addhmn1[maxn], addhmn2[maxn];
inline void Update(int x) {
mn[x] = mn[x << 1] + mn[x << 1 | 1], hmn[x] = min(hmn[x << 1], hmn[x << 1 | 1]);
}
void Build(int x, int l, int r) {
int mid;
if (l == r) {
In(mn[x].mn1), mn[x].mn2 = inf, hmn[x] = mn[x].mn1;
return;
}
mid = (l + r) >> 1;
Build(x << 1, l, mid), Build(x << 1 | 1, mid + 1, r);
Update(x);
}
inline void Puttag(int x, int vmn1, int vmn2, int vhmn1, int vhmn2) {
hmn[x] = min(hmn[x], mn[x].mn1 + vhmn1);
addhmn1[x] = min(addhmn1[x], addmn1[x] + vhmn1);
addhmn2[x] = min(addhmn2[x], addmn2[x] + vhmn2);
addmn1[x] += vmn1, addmn2[x] += vmn2, mn[x].mn1 += vmn1;
if (mn[x].mn2 ^ inf) mn[x].mn2 += vmn2;
}
inline void Pushdown(int x) {
if (!addmn1[x] && !addmn2[x] && !addhmn1[x] && !addhmn2[x]) return;
int ls, rs, now;
ls = x << 1, rs = x << 1 | 1, now = min(mn[ls].mn1, mn[rs].mn1);
if (now == mn[ls].mn1) Puttag(ls, addmn1[x], addmn2[x], addhmn1[x], addhmn2[x]);
else Puttag(ls, addmn2[x], addmn2[x], addhmn2[x], addhmn2[x]);
if (now == mn[rs].mn1) Puttag(rs, addmn1[x], addmn2[x], addhmn1[x], addhmn2[x]);
else Puttag(rs, addmn2[x], addmn2[x], addhmn2[x], addhmn2[x]);
addmn1[x] = addmn2[x] = addhmn1[x] = addhmn2[x] = 0;
}
void Modify_add(int x, int l, int r, int ql, int qr, int v) {
int mid;
if (ql <= l && qr >= r) {
Puttag(x, v, v, v, v);
return;
}
mid = (l + r) >> 1, Pushdown(x);
if (ql <= mid) Modify_add(x << 1, l, mid, ql, qr, v);
if (qr > mid) Modify_add(x << 1 | 1, mid + 1, r, ql, qr, v);
Update(x);
}
void Modify_max(int x, int l, int r, int ql, int qr, int v) {
int mid;
if (mn[x].mn1 >= v) return;
if (ql <= l && qr >= r && mn[x].mn2 > v) {
Puttag(x, v - mn[x].mn1, 0, v - mn[x].mn1, 0);
return;
}
mid = (l + r) >> 1, Pushdown(x);
if (ql <= mid) Modify_max(x << 1, l, mid, ql, qr, v);
if (qr > mid) Modify_max(x << 1 | 1, mid + 1, r, ql, qr, v);
Update(x);
}
int Query_min(int x, int l, int r, int ql, int qr) {
int mid, ret;
if (ql <= l && qr >= r) return mn[x].mn1;
mid = (l + r) >> 1, Pushdown(x), ret = inf;
if (ql <= mid) ret = Query_min(x << 1, l, mid, ql, qr);
if (qr > mid) ret = min(ret, Query_min(x << 1 | 1, mid + 1, r, ql, qr));
Update(x);
return ret;
}
int Query_hmin(int x, int l, int r, int ql, int qr) {
int mid, ret;
if (ql <= l && qr >= r) return hmn[x];
mid = (l + r) >> 1, Pushdown(x), ret = inf;
if (ql <= mid) ret = Query_hmin(x << 1, l, mid, ql, qr);
if (qr > mid) ret = min(ret, Query_hmin(x << 1 | 1, mid + 1, r, ql, qr));
Update(x);
return ret;
}
int main() {
int i, op, l, r, v;
In(n), In(m), Build(1, 1, n);
while (m) {
--m, In(op), In(l), In(r);
if (op == 1) In(v), Modify_add(1, 1, n, l, r, v);
else if (op == 2) In(v), Modify_max(1, 1, n, l, r, v);
else if (op == 3) Out(Query_min(1, 1, n, l, r)), Putc('\n');
else Out(Query_hmin(1, 1, n, l, r)), Putc('\n');
}
return Flush(), 0;
}
原文地址:https://www.cnblogs.com/cjoieryl/p/10251754.html
时间: 2024-10-10 16:05:45