James Munkres Topology: Sec 22 Exer 6

Exercise 22.6 Recall that \(\mathbb{R}_{K}\) denotes the real line in the \(K\)-topology. Let \(Y\) be the quotient space obtained from \(\mathbb{R}_K\) by collapsing the set \(K\) to a point; let \(p: \mathbb{R}_K \rightarrow Y\) be the quotient map.

(a) Show that \(Y\) satisfies the \(T_1\) axiom, but is not Hausdorff.

(b) Show that \(p \times p: \mathbb{R}_K \times \mathbb{R}_K \rightarrow Y \times Y\) is not a quotient map.

Comment This exercise shows that the product map of two quotient maps is not necessarily a quotient map.

Proof: (a) At first, we will clarify the forms of open sets in the quotient space \(Y\), which are defined as the images of saturated open sets in \(\mathbb{R}_K\) under the quotient map \(p\). Assume the set \(K\) coalesces to \(\alpha\), \(Y\) can be written as: \(Y = (\mathbb{R} - K) \cup \{\alpha\}\). For any \(x\) in \(\mathbb{R} - K\), \(p^{-1}(x) = x\) and \(p^{-1}(\alpha) = K\). Then the saturated open sets in \(\mathbb{R}_K\) have the following two forms:

  1. open set \(U\) of \(\mathbb{R}_K\) which contains \(K\);
  2. \(U - K\) with \(U\) being arbitrary open set in \(\mathbb{R}_K\).

Then their images under the quotient map \(p\) are

  1. \((U - K) \cup \{\alpha\}\) with \(K \subsetneq U\)
  2. \(U - K\)

which comprise the quotient topology on \(Y\). To prove \(Y\) satisfies the \(T_1\)-axiom, by referring to Theorem 17.8, we only need to show that one-point set \(\{x_0\}\) is closed. Then finite union of such closed singletons is also closed. To achieve this, there are two cases to be discussed.

  1. If \(x_0 = \alpha\), for any point \(x \in Y\) and \(x \neq x_0\), i.e. \(x \in \mathbb{R} - K\), there exists an open set \(U - K\) in \(Y\) containing \(x\), which does not contain \(x_0\). Therefore, for all \(x \in \mathbb{R} - K\), it does not belong to the closure of \(\{\alpha\}\). Hence \(\{\alpha\}\) is closed.
  2. If \(x_0 \in \mathbb{R} - K\), there are further two sub-cases:
    • For any \(x \in \mathbb{R} - K\) and \(x \neq x_0\), because \(\mathbb{R}_K\) is Hausdorff, there exists open sets \(U\) and \(V\) in \(\mathbb{R}_K\), such that \(x_0 \in U\), \(x \in V\) and \(U \cap V = \Phi\). Then \(x_0 \in (U - K)\), \(x \in (V - K)\) and \((U - K) \cap (V - K) = \Phi\), where both \(U - K\) and \(V - K\) are open in \(Y\). Hence \(\{x_0\} \cap (V - K) = \Phi\).
    • For \(x = \alpha\), the open set containing \(x\) has the form \((U - K) \cup \{\alpha\}\) where \(U\) is an open set in \(\mathbb{R}_K\) containing \(K\). Then,
      • when \(x_0 \in (-\infty, 0]\), let \(U = (0, 2)\);
      • when \(x_0 \in (0, 1]\), let \(U = (0,x_0) \cup (x_0, \frac{3}{2})\);
      • when \(x_0 \in (1, +\infty)\), let \(U = (0,x_0)\),

      such that \(K \subset U\) and \(\{x_0\} \cap ((U - K) \cup \{\alpha\}) = \Phi\).

    Combining the above two sub-cases, we have for any \(x \neq x_0\) in \(Y\), it does not belong to the closure of \(\{x_0\}\). Hence \(\{x_0\}\) is closed.

Summarize the above cases, one-point set in \(Y\) is closed. Hence \(Y\) satisfies the \(T_1\)-axiom.

Next, we will show \(Y?\) is not Hausdorff.

Let \(x_1, x_2 \in Y\), \(x_1 = \alpha\) and \(x_2 = 0\). For any open set in \(Y\) containing 0 but not \(\alpha\), it must have the form \(V - K\) with \(V\) being open in \(\mathbb{R}_K\). Then there exists an open interval \((a_2, b_2)\) with \(a_2 < 0\) and \(b_2 > 0\) such that \(0 \in (a_2, b_2)\) and \((a_2, b_2) \subset V\). We can find an \(n_0 \in \mathbb{Z}_+\) such that \(\frac{1}{n_0} < b_2\) and hence \(\frac{1}{n_0} \in (a_2, b_2)\). Meanwhile, any open set containing \(\alpha\) has the form \((U - K ) \cup \{\alpha\}\) with \(U\) being open in \(\mathbb{R}_K\) and \(K \subsetneq U\). Then there exists an open interval \((a_1,b_1)\) such that \(\frac{1}{n_0} \in (a_1, b_1)\) and \((a_1, b_1) \subset U\). Therefore, \((a_1,b_1) \cap (a_2,b_2) \neq \Phi\) and \(U \cap V \neq \Phi\), especially, \((U-K)\cap(V-K)\neq\Phi\). Hence, \(((U-K)\cup\{\alpha\}) \cap (V-K) \neq \Phi\). Therefore, for any open set containing 0, there is no open set containing \(\alpha\) which has no intersection with it. So \(Y\) is not Hausdorff.

(b) To prove this part, Exercise 13 in Section 17 should be adopted, which is presented below:

\(X\) is Hausdorff if and only if the diagonal \(\Delta = \{x \times x \vert x \in X \}\) is closed in \(X \times X\).

  1. If \(X\) is Hausdorff, for any \(x_1, x_2 \in X\) and \(x_1 \neq x_2\), there exist \(U\) and \(V\) open in \(X\) such that \(x_1 \in U\), \(x_2 \in V\) and \(U \cap V = \Phi\). Because \(U\) and \(V\) have no common points, \((U \times V) \cap \Delta = \Phi\). Then according to Theorem 17.5, \((x_1, x_2)\) does not belong to the closure of \(\Delta\). Because \(x_1\) and \(x_2\) are arbitrary two different points in \(X\), \(\Delta\) is closed.
  2. On the contrary, if \(\Delta\) is closed, for all \(x_1, x_2 \in X\) and \(x_1 \neq x_2\), there exists an open set \(W\) in \(X \times X\) containing \((x_1,x_2)\) such that \(W \cap \Delta = \Phi\). Then there exists a basis element \(U \times V\) in \(X \times X\) such that \((x_1, x_2) \subset U \times V \subset W\). Hence \(x_1 \in U\) and \(x_2 \in V\). Because \((U \times V) \cap \Delta = \Phi\), \(U \cap V = \Phi\). Because \(x_1\) and \(x_2\) are arbitrary two different points in \(X\), \(X\) is Hausdorff.

With the proved S17E13 and the obtained conclusion in part (a) that \(Y\) is no Hausdorff, we know that the diagonal set \(\Delta\) is not closed in \(Y \times Y\). Meanwhile, because its preimage \((p \times p)^{-1}(\Delta) = \{x \times x \vert x \in \mathbb{R}\}\) is closed in \(\mathbb{R}_K \times \mathbb{R}_K\), the product map \(p \times p\) is not a quotient map.

Finally, the following figure illustrates the original space \(\mathbb{R}_K\) and the quotient space \(Y\). The transformation from \(\mathbb{R}_K\) to \(Y\) can be considered as merging a countable number of knots on a rope.

原文地址:https://www.cnblogs.com/peabody/p/10428601.html

时间: 2024-11-05 11:48:08

James Munkres Topology: Sec 22 Exer 6的相关文章

James Munkres Topology: Sec 22 Exer 3

Exercise 22.3 Let \(\pi_1: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}\) be projection on the first coordinate. Let \(A\) be the subspace of \(\mathbb{R}\times\mathbb{R}\) consisting of all points \(x \times y\) for which either \(x \geq 0\)

James Munkres Topology: Sec 22 Example 1

Example 1 Let \(X\) be the subspace \([0,1]\cup[2,3]\) of \(\mathbb{R}\), and let \(Y\) be the subspace \([0,2]\) of \(\mathbb{R}\). The map \(p: X \rightarrow Y\) defined by \[ p(x)=\begin{cases} x & \text{for}\; x \in [0,1],\\ x-1 & \text{for}\;

James Munkres Topology: Theorem 16.3

Theorem 16.3 If \(A\) is a subspace of \(X\) and \(B\) is a subspace of \(Y\), then the product topology on \(A \times B\) is the same as the topology \(A \times B\) inherits as a subspace of \(X \times Y\). Comment: To prove the identity of two topo

James Munkres Topology: Theorem 20.4

Theorem 20.4 The uniform topology on \(\mathbb{R}^J\) is finer than the product topology and coarser than the box topology; these three topologies are all different if \(J\) is infinite. Proof: a) Prove the uniform topology is finer than the product

James Munkres Topology: Lemma 21.2 The sequence lemma

Lemma 21.2 (The sequence lemma) Let \(X\) be a topological space; let \(A \subset X\). If there is a sequence of points of \(A\) converging to \(x\), then \(x \in \bar{A}\); the converse holds if \(X\) is metrizable. Proof a) Sequence convergence \(\

Mathematics slides

James Munkres "Topology" Chapter 1 Set Theory and Logic 原文地址:https://www.cnblogs.com/peabody/p/9062404.html

Constructing continuous functions

This post summarises different ways of constructing continuous functions, which are introduced in Section 18 of James Munkres "Topology". Constant function. Inclusion function. N.B. The function domain should have the subspace topology relative

[转]机器学习经典书籍

算法组 注册 登录 机器学习经典书籍 机器学习 machine-learning 书单 你已经选择了 0 个帖子. 全选 取消选择 1 / 6 sys 14-12-9 5 选择以及回复其的帖子 选择 前面有一篇机器学习经典论文/survey合集223.本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍.本文会保持更新,欢迎推荐. 入门书单 <数学之美> PDF364作者吴军大家都很熟悉.以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用. <Programming C

[转]林达华推荐的几本数学书

http://blog.csdn.net/lqhbupt/article/details/32106217 Dahua Lin早在几年前就已经冒尖出来了,现在在MIT攻读博士学位,前途不可限量.他总是有无穷的精力,学习,同时几篇几篇的写paper,几万行几万行的写code,几万字几万字的写blog.他扎实的数学功底和相关知识的功底,以及深睿的洞察和理解问题的能力,注定他将在machine learning和computer vision等相关领域取得大量的成果,甚至是突破性的成果.期待他在这些领