opencv python:图像直方图 histogram

直接用matplotlib画出直方图

def plot_demo(image):
    plt.hist(image.ravel(), 256, [0, 256])  # image.ravel()将图像展开,256为bins数量,[0, 256]为范围
    plt.show()

图像直方图

def image_hist(image):
    color = ('blue', 'green', 'red')
    for i, color in enumerate(color):

        # 计算出直方图,calcHist(images, channels, mask, histSize(有多少个bin), ranges[, hist[, accumulate]]) -> hist
        # hist 是一个 256x1 的数组,每一个值代表了与该灰度值对应的像素点数目。

        hist = cv.calcHist(image, [i], None, [256], [0, 256])
        print(hist.shape)
        plt.plot(hist, color=color)
        plt.xlim([0, 256])
    plt.show()

直方图均值化

是图像增强的一个手段

def equalHist_demo(image):
    gray = cv.cvtColor(image,cv.COLOR_BGR2GRAY)

    # 全局直方图均衡化,用于增强图像对比度,即黑的更黑,白的更白
    dst = cv.equalizeHist(gray)
    cv.imshow("equalHist_demo", dst)

    # 局部直方图均衡化
    clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
    clahe_dst = clahe.apply(gray)
    cv.imshow("clahe", clahe_dst)

直方图比较

# 创建直方图
def create_rgb_demo(image):
    h, w, c = image.shape
    rgbHist = np.zeros([16*16*16, 1], np.float32)
    bsize = 256 / 16
    for row in range(h):
        for col in range(w):
            b = image[row, col, 0]
            g = image[row, col, 1]
            r = image[row, col, 2]
            index = np.int(b/bsize)*16*16 + np.int(g/bsize)*16 + np.int(r/bsize)
            rgbHist[np.int(index), 0] = rgbHist[np.int(index), 0] + 1

    return rgbHist

# 利用直方图比较相似性,用巴氏和相关性比较好
def hist_compare(image1, image2):
    hist1 = create_rgb_demo(image1)
    hist2 = create_rgb_demo(image2)
    match1 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_BHATTACHARYYA)
    match2 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_CORREL)
    match3 = cv.compareHist(hist1, hist2, method=cv.HISTCMP_CHISQR)
    print("巴式距离:%s, 相关性:%s, 卡方:%s"%(match1, match2, match3))

直方图反向投影

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt

def hist2d_demo(image):
    hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV)
    hist = cv.calcHist([image], [0, 1], None, [180, 360], [0, 180, 0, 256])  # 计算直方图
    print(hist.shape)
    # cv.imshow("hist2d_demo", hist)
    plt.imshow(hist, interpolation="nearest")  # 直方图显示
    plt.title("2D Histogram")
    plt.show()

# OpenCV 提供的函数 cv2.calcBackProject() 可以用来做直方图反向 投影。
# 它的参数与函数 cv2.calcHist 的参数基本相同。其中的一个参数是我 们要查找目标的直方图。
# 同样再使用目标的直方图做反向投影之前我们应该先对其做归一化处理。
# 返回的结果是一个概率图像
def back_projection_demo():
    """
    反向投影可以用来做图像分割,或者在图像中找寻我们感兴趣的部分。
    它会输出与输入图像(待搜索)同样大小的图像,其中的每一个像素值代表了输入图像上对应点属于目标对象的概率。
    输出图像中像素值越高(越白)的点就越可能代表我们要搜索的目标 (在输入图像所在的位置)。
    直方图投影经常与camshift 算法等一起使用。
    步骤:
    1. 为一张包含我们要查找目标的图像创建直方图,我们要查找的对象要尽量占满这张图像。
        最好使用颜色直方图,因为一个物体的颜色要比它的灰 度能更好的被用来进行图像分割与对象识别。
    2. 们再把这个颜色直方图投 影到输入图像中寻找我们的目标,
        也就是找到输入图像中的每一个像素点的像素值在直方图中对应的概率,这样我们就得到一个概率图像。
    3. 设置适当的阈值对概率图像进行二值化
    """
    sample = cv.imread("../images/roi.png")
    target = cv.imread("../images/CrystalLiu3.jpg")
    roi_hsv = cv.cvtColor(sample, cv.COLOR_BGR2HSV)
    target_hsv = cv.cvtColor(target, cv.COLOR_BGR2HSV)

    cv.imshow("sample", sample)
    cv.imshow("target", target)

    roiHist = cv.calcHist([roi_hsv], [0, 1], None, [180, 256], [0, 180, 0, 256])

    # 归一化:原始图像,结果图像,映射到结果图像中的最小值,最大值,归一化类型
    # cv.NORM_MINMAX对数组的所有值进行转化,使它们线性映射到最小值和最大值之间
    # 归一化后的图像便于显示,归一化后到0,255之间了
    cv.normalize(roiHist, roiHist, 0, 255, cv.NORM_MINMAX)
    dst = cv.calcBackProject([target_hsv], [0, 1], roiHist, [0, 180, 0, 256], 1)
    cv.imshow("backProjectionDemo", dst)

if __name__ == '__main__':
    src = cv.imread("../images/CrystalLiu1.jpg")  # 读入图片放进src中
    cv.namedWindow("Crystal Liu")  # 创建窗口
    cv.imshow("Crystal Liu", src)  # 将src图片放入该创建的窗口中
    hist2d_demo(src)
    # back_projection_demo()

    cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
    cv.destroyAllWindows()  # 关闭所有窗口

原文地址:https://www.cnblogs.com/wbyixx/p/12241569.html

时间: 2024-11-14 09:14:54

opencv python:图像直方图 histogram的相关文章

OPENCV(5) —— 图像直方图

新版本对直方图不再使用之前的histogram的形式,而是用统一的Mat或者MatND的格式来存储直方图,可见新版本Mat数据结构的优势. C++: void calcHist(const Mat* images, int nimages, const int* channels, InputArray mask, OutputArray hist, intdims, const int* histSize, const float** ranges, bool uniform=true, bo

opencv:图像直方图均衡化

// 直方图均衡化 Mat gray, dst; cvtColor(src, gray, COLOR_BGR2GRAY); equalizeHist(gray, dst); imshow("gray", gray); imshow("equalizeHist", dst); 原文地址:https://www.cnblogs.com/wbyixx/p/12246837.html

opencv:图像直方图相似性比较

void hist_compare(Mat src1, Mat src2) { int histSize[] = { 256, 256, 256 }; int channels[] = { 0, 1, 2 }; Mat hist1, hist2; float c1[] = { 0, 255 }; float c2[] = { 0, 255 }; float c3[] = { 0, 255 }; const float* histRanges[] = { c1, c2, c3 }; calcHis

图像直方图均衡化增强opencv与C语言版

本文实现彩色图像的全局直方图均衡.分别对R/G/B三通道均衡,读写图片采用OpenCV.代码如下: #include <opencv2/opencv.hpp> //#include <cv.h> //#include <cxcore.h> //#include <highgui.h> #include <time.h> #include <stdio.h> #include <math.h> #include "

OpenCV成长之路:图像直方图

http://ronny.blog.51cto.com/8801997/1394115 2014-04-11 13:47:27 标签:opencv 直方图 统计表 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394115 一.图像直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种

OpenCV成长之路:图像直方图的应用

2014-04-11 13:57:03 标签:opencv 图像 直方图 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394118 正如第4篇文章所说的图像直方图在特征提取方面有着很重要的作用,本文将举两个实际工程中非常实用的例子来说明图像直方图的应用. 一.直方图的反向映射. 我们以人脸检测举例,在人脸检测中,我们第一步往往需要先提取图像中皮肤区域来缩小人脸的检

OpenCV入门教程之四 图像直方图

一.图像直方图的概念 图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的.纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比. 图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征.在实际工程中,图像直方图在特征提取.图像匹配等方面都有很好的应用.  二.利用OpenCV计算图像的直方图 OpenCV中计算图像直方图像函数是calcHist,它的参数比较多,下面分析一下它的接口和用法. void calc

OpenCV Python教程(1、图像的载入、显示和保存)

本文转载自 OpenCV Python教程(1.图像的载入.显示和保存)     作者 Daetalus 本文是OpenCV  2 Computer Vision Application Programming Cookbook读书笔记的第一篇.在笔记中将以Python语言改写每章的代码. PythonOpenCV的配置这里就不介绍了. 注意,现在OpenCV for Python就是通过NumPy进行绑定的.所以在使用时必须掌握一些NumPy的相关知识! 图像就是一个矩阵,在OpenCV fo

OpenCV入门教程之五 图像直方图的应用

正如第4篇文章所说的图像直方图在特征提取方面有着很重要的作用,本文将举两个实际工程中非常实用的例子来说明图像直方图的应用. 一.直方图的反向映射 我们以人脸检测举例,在人脸检测中,我们第一步往往需要先提取图像中皮肤区域来缩小人脸的检测范围,这一般获得皮肤的颜色范围还需要定义阈值并不断的调整,实际中参数太多而不容易控制. 这里我们就可以考虑用直方图的反射映射. 1,收集人脸皮肤样本. 2,拼合样本并计算其颜色直方图. 3,将得到的样本颜色直方图反射映射到待检测的图片中,然后进行阈值化即可. 这里为