网络上深度学习相关博客教程质量参差不齐,很多细节很少有文章提到,所以本着夯实深度学习基础的想法写下此系列博文。
本文会从神经网络的概述、不同框架的公式推导和对应的基于numpy的Python代码实现等方面进行干货的讲解。如有不懂之处欢迎在评论留言,本人也初学机器学习与深度学习不久,有不足之处也请欢迎我联系。:)
推荐书籍与视频教程:
《机器学习》—周志华
《Deep learning》—Ian Goodfellow、Yoshua Bengio 和 Aaron Courville
李宏毅深度学习视频课程-youtube Bilibili
神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
神经网络最基本的组成是神经元模型,每个神经元与其他神经元相连,神经元接受到来自 $n$ 个其他神经元传递过来的输入信号,这些信号通过带有权重的连接进行传递,神经元接收到的总输入值将于阈值进行比较,然后通过“激活函数”处理产生输出。把许多神经元按一定层次结构连接起来就得到了神经网络。
感知机模型
感知机模型(Perceptron)由两层神经元组成,分别是输入层与输出层。
感知机模型是最为基础的网络结构,其计算形式如下
其中 $f$ 为激活函数。我们先假设 $f$ 是阶跃函数(Step function)。
12345678910 |
def (out): """ y = sign(w·x + b) :param out - the result of w·x + b :return: y """ if out >= 0: return 1 else: return -1 |
感知机的学习规则非常简单,对于训练样本 $(x,y)$,若当前感知机的输出为 $hat{y}$,则感知机参数更新方式如下
其中 $eta$ 称为学习率(learning rate)
下面我们使用Python来实现感知机进行分类:
12345678910111213141516大专栏 神经网络的Python实现(一)了解神经网络line">17 |
w = np.zeros(shape=data[0].shape)b = np.zeros(shape=label[0].shape) def update(x, y, learning_rate): """ 当发现误分类点时,更新参数w,b. 更新方法: w = w + learning_rate * x * y b = b + learning_rate * y :param x: 误分类点坐标 :param y: 误分类点正确分类标签 :return: None """ global w, b w = w + learning_rate * x * y b = b + learning_rate * y |
假设训练集是线性可分的。更新过程便是,遍历全部的训练实例,通过感知机的计算方式计算出结果 $y$ 与对应标签进行比较(感知机标签一般为 1 和 -1),如果误分便使用updata()
进行参数更新。下图是感知机线性分类的拟合过程。
感知机拟合过程
随意写的训练数据
1234 |
# x[[3.2, 0.8], [5, 5], [3, 3], [4, 3], [1, 1], [2, 2], [1, 4]]# y[-1, 1, 1, 1, -1, -1, -1] |
感知机只有输入层和输出层,且只有输出层神经元进行激活处理,即只有一层功能神经元,其学习能力非常有限。如果问题是非线性可分问题,那么感知机会发生振荡,无法收敛。
多层网络
为了解决非线性可分问题,那么便需要采用多层功能神经元,如简单的两层感知机。如图
多层前馈神经网络
其中输入层与输出层之间一层被称为隐藏层(隐含层),隐藏层和输出层都是拥有激活函数的功能神经元。一般情况下,隐藏层可以有多层,同层神经元之间不存在连接,也不存在跨层连接。这样的神经网络结构被称为多层前馈神经网络(multi-layer feedforward neural networks)
因多层功能神经元的存在,多层网络的学习能力要强得多,同时简单的感知机学习规则显然已经无法满足要求。更强大的学习算法,误差逆传播(error BackPropagation)算法,即BP算法便是最成功的神经网络学习算法。
TODO
在下一篇博文中,我们将使用BP算法来实现“全连接网络”。
原文地址:https://www.cnblogs.com/lijianming180/p/12041507.html