基本概念
对数几率回归(Logistic Regression,又称逻辑回归)可以用来解决二分类和多分类问题。分类问题中,输出集合不再是连续值,而是离散值,即\(\mathcal{Y}\in \{0,1,2,\cdots\}\)。以二分类问题为例,其输出集合一般为\(\mathcal{Y}\in \{0,1\}\)。
为了解决二分类问题,对数几率回归在线性回归的基础上引入Sigmoid函数(Logistic函数),其中\(\exp(\cdot)\)是自然指数:
\[
g(z) = \dfrac{1}{1 +\exp({-z})}\\
\]
该函数的值域为\([0,1]\),如下图所示:
因此,对数几率回归中假设集的定义为:
\[
h_\theta (x) = g ( \theta^T x )
\]
实际上,\(h_{\theta}(x)\)给出了在给定参数\(\theta\)和样本\(x\)的条件下,标签\(y=1\)的概率。
\[
\begin{aligned}& h_\theta(x) = P(y=1 | x ; \theta) = 1 - P(y=0 | x ; \theta) \\& P(y = 0 | x;\theta) + P(y = 1 | x ; \theta) = 1\end{aligned}
\]
损失函数
对数几率回归的损失函数如下所示:
\[
J(\theta) = \dfrac{1}{n} \sum_{i=1}^N \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) \ \mathrm{Cost}(h_\theta(x^{(i)}),y^{(i)}) =\left\{
\begin{aligned}
&-\log(h_\theta(x^{(i)})) \; & \text{if }y^{(i)} = 1\&-\log(1-h_\theta(x^{(i)})) \; & \text{if } y^{(i)} = 0
\end{aligned}
\right.
\]
该损失函数通过极大似然法导出。对于给定的输入集\(\mathcal{X}\)和输出集\(\mathcal{Y}\),其似然函数为:
\[
\prod _{i = 1}^n \left[h_\theta(x^{(i)})\right]^{y^{(i)}}\left[1 - h_\theta(x^{(i)})\right]^{1 - y^{(i)}}
\]
由于连乘不好优化,因此上式两边取对数,转化成连加的形式,得到对数似然函数:
\[
L(\theta)=\frac{1}{n} \sum _{i=1}^n \left[ y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)})\log(1 - h_\theta(x^{(i)})) \right ]
\]
最大化上述对数似然函数就可以得到最优的参数\(\theta\)。而最大化对数似然函数\(L(\theta)\)等价于最小化\(- L(\theta)\),因此我们可以得到如下损失函数的形式:
\[
J(\theta) = -\frac{1}{n} \sum _{i=1}^n \left[ y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)})\log(1 - h_\theta(x^{(i)})) \right ]
\]
参数学习
得到损失函数后,需要使用梯度下降法求解该函数的最小值。首先,将损失函数进行化简:
\[
\begin{aligned}
J(\theta) &=-\frac{1}{n} \sum _{i=1}^N \left[ y^{(i)} \log h_\theta(x^{(i)}) + (1-y^{(i)})\log(1 - h_\theta(x^{(i)})) \right ] \ &=-\frac{1}{n} \sum _{i=1}^n \left[ y^{(i)}\log \frac {h_\theta(x^{(i)})} {1 - h_\theta(x^{(i)})} + \log(1 - h_\theta(x^{(i)})) \right ] \ &=-\frac{1}{n} \sum _{i=1}^n \left[ y^{(i)} \log \frac { {\exp(\theta\cdot x^{(i)})} / (1 + \exp(\theta\cdot x^{(i)}))} {{1} /(1 + \exp(\theta\cdot x^{(i)}))} + \log(1 - h_\theta(x^{(i)})) \right ] \ &=-\frac{1}{n} \sum _{i=1}^n \left[ y_i (\theta\cdot x^{(i)}) + \log(1 + \exp (\theta\cdot x^{(i)})) \right ]
\end{aligned}
\]
求解损失函数\(J(\theta)\)对参数\(\theta\)的偏导数:
\[
\begin{aligned}
\frac{\partial}{\partial \theta}J(\theta) &=-\frac{1}{n} \sum _{i=1}^n \left [y^{(i)} \cdot x^{(i)} - \frac {1} {1 + \exp(\theta \cdot x^{(i)})} \cdot \exp(\theta \cdot x^{(i)}) \cdot x^{(i)}\right ] \ &=-\frac{1}{n} \sum _{i=1}^n \left [y^{(i)} \cdot x^{(i)} - \frac {\exp(\theta \cdot x^{(i)})} {1 + \exp(\theta \cdot x^{(i)})} \cdot x^{(i)}\right ] \ &=-\frac{1}{n} \sum _{i=1}^n \left (y^{(i)} - \frac {\exp(\theta \cdot x^{(i)})} {1 + \exp(\theta \cdot x^{(i)})} \right ) x^{(i)}\ &=\frac{1}{n} \sum _{i=1}^n \left (h_\theta(x^{(i)})-y^{(i)} \right )x^{(i)}
\end{aligned}
\]
使用梯度下降法逐个更新参数:
\[
\theta_j := \theta_j - \frac{\alpha}{n} \sum_{i=1}^n \left(h_\theta(x^{(i)}) - y^{(i)}\right) x_j^{(i)}
\]
原文地址:https://www.cnblogs.com/littleorange/p/12231329.html