UserBehavior是阿里巴巴提供的一个淘宝用户行为数据集,用于隐式反馈推荐问题的研究。
数据来源? 传送门
数据情况介绍:
UserBehavior.csv
本数据集包含了2017年11月25日至2017年12月3日之间,有行为的约一百万随机用户的所有行为(行为包括点击、购买、加购、喜欢)。
数据集的每一行表示一条用户行为,由用户ID、商品ID、商品类目ID、行为类型和时间戳组成,并以逗号分隔。
关于数据集中每一列的详细描述如下:
列名称 | 说明 |
---|---|
用户ID | 整数类型,序列化后的用户ID |
商品ID | 整数类型,序列化后的商品ID |
商品类目ID | 整数类型,序列化后的商品所属类目ID |
行为类型 | 字符串,枚举类型,包括(‘pv‘, ‘buy‘, ‘cart‘, ‘fav‘) |
时间戳 | 行为发生的时间戳 |
注意到,用户行为类型共有四种,它们分别是
行为类型 | 说明 |
---|---|
pv | 商品详情页pv,等价于点击 |
buy | 商品购买 |
cart | 将商品加入购物车 |
fav | 收藏商品 |
关于数据集大小的一些说明如下
维度 | 数量 |
---|---|
用户数量 | 987,994 |
商品数量 | 4,162,024 |
商品类目数量 | 9,439 |
所有行为数量 | 100,150,807 |
由于源数据量较大(3.41G),后续只对300万条数据进行处理,这部分数据中包含29178名用户的行为记录。
原文地址:https://www.cnblogs.com/ohou/p/12112261.html
时间: 2024-10-01 20:44:22