Counting Intersections
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Given some segments which are paralleled to the coordinate axis. You need to count the number of their intersection.
The input data guarantee that no two segments share the same endpoint, no covered segments, and no segments with length 0.
Input
The first line contains an integer T, indicates the number of test case.
The
first line of each test case contains a number n(1<=n<=100000),
the number of segments. Next n lines, each with for integers, x1, y1,
x2, y2, means the two endpoints of a segment. The absolute value of the
coordinate is no larger than 1e9.
Output
For each test case, output one line, the number of intersection.
Sample Input
2
4
1 0 1 3
2 0 2 3
0 1 3 1
0 2 3 2
4
0 0 2 0
3 0 3 2
3 3 1 3
0 3 0 2
Sample Output
4
0
分析:对于横向线段只保留两个端点并记录类型,对竖向线段保留整个线段;
离散化并排序,遍历竖向线段,对横向端点树状数组更新;
代码:
#include <iostream> #include <cstdio> #include <cstdlib> #include <cmath> #include <algorithm> #include <climits> #include <cstring> #include <string> #include <set> #include <map> #include <queue> #include <stack> #include <vector> #include <list> #define rep(i,m,n) for(i=m;i<=n;i++) #define rsp(it,s) for(set<int>::iterator it=s.begin();it!=s.end();it++) #define mod 1000000007 #define inf 0x3f3f3f3f #define vi vector<int> #define pb push_back #define mp make_pair #define fi first #define se second #define ll long long #define pi acos(-1.0) #define pii pair<int,int> #define Lson L, mid, rt<<1 #define Rson mid+1, R, rt<<1|1 const int maxn=2e5+10; const int dis[4][2]={{0,1},{-1,0},{0,-1},{1,0}}; using namespace std; ll gcd(ll p,ll q){return q==0?p:gcd(q,p%q);} ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;} int n,m,k,t,x[maxn],y[maxn],p[maxn],xcnt,ycnt,id,idx; ll ans; multiset<int>s; struct node { int x,low,high; bool operator<(const node&p)const { return x<p.x; } }a[maxn]; struct node1 { int x,y,type; bool operator<(const node1&p)const { return x<p.x; } }g[maxn]; int get(int x) { int sum=0; for(int i=x;i;i-=(i&(-i))) sum+=p[i]; return sum; } void add(int x,int y) { for(int i=x;i<=maxn-5;i+=(i&(-i))) p[i]+=y; } int main() { int i,j; scanf("%d",&t); while(t--) { xcnt=ycnt=id=idx=0; ans=0; memset(p,0,sizeof(p)); scanf("%d",&n); rep(i,1,n) { int b,c,d,e; scanf("%d%d%d%d",&b,&c,&d,&e); if(c>e)swap(c,e); if(b>d)swap(b,d); if(b==d) { x[++xcnt]=a[++id].x=b; y[++ycnt]=a[id].low=c; y[++ycnt]=a[id].high=e; } else { x[++xcnt]=b; x[++xcnt]=d; y[++ycnt]=c; g[++idx].x=b; g[idx].y=c; g[idx].type=0; g[++idx].x=d; g[idx].y=e; g[idx].type=1; } } sort(x+1,x+xcnt+1); sort(y+1,y+ycnt+1); sort(a+1,a+id+1); sort(g+1,g+idx+1); int num1=unique(x+1,x+xcnt+1)-x-1; int num2=unique(y+1,y+ycnt+1)-y-1; rep(i,1,id) { a[i].x=lower_bound(x+1,x+num1+1,a[i].x)-x; a[i].low=lower_bound(y+1,y+num2+1,a[i].low)-y; a[i].high=lower_bound(y+1,y+num2+1,a[i].high)-y; } rep(i,1,idx) { g[i].x=lower_bound(x+1,x+num1+1,g[i].x)-x; g[i].y=lower_bound(y+1,y+num2+1,g[i].y)-y; } int now=1; rep(i,1,id) { while(now<=idx&&g[now].x<=a[i].x) { if(g[now].type==0)add(g[now].y,1); else { if(g[now].x!=a[i].x) add(g[now].y,-1); else s.insert(g[now].y); } now++; } ans+=get(a[i].high)-get(a[i].low-1); for(int x:s)add(x,-1); s.clear(); } printf("%lld\n",ans); } //system("Pause"); return 0; }