Problem E. GukiZ and GukiZiana
Solution
一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数。
没有连续的1的二进制序列的数目满足f[i]=f[i-1]+f[i-2],恰好是斐波那契数列。
数据范围在10^18,用矩阵加速计算,有连续的1的数目就用2^n-f[n+1]
最后枚举k的每一位,是1乘上2^n-f[n+1],是0乘上f[n+1]
注意以上需要满足 2^l>k。并且这里l的最大值为64,需要特判。
#include <bits/stdc++.h> using namespace std; typedef unsigned long long ll; const int N = 2; ll n, k, l, m; struct Mat { ll mat[N + 1][N + 1]; } A, B; Mat operator * ( Mat a, Mat b ) { Mat c; memset ( c.mat, 0, sizeof c.mat ); for ( int k = 0; k < N; k++ ) for ( int i = 0; i < N; i++ ) for ( int j = 0; j < N; j++ ) ( c.mat[i][j] += ( a.mat[i][k] * b.mat[k][j] ) % m ) %= m; return c; } Mat operator ^ ( Mat a, ll pow ) { Mat c; for ( int i = 0; i < N; i++ ) for ( int j = 0; j < N; j++ ) c.mat[i][j] = ( i == j ); while ( pow ) { if ( pow & 1 ) c = c * a; a = a * a; pow >>= 1; } return c; } ll quickp( ll x ) { ll s = 1, c = 2; while( x ) { if( x & 1 ) s = ( s * c ) % m; c = ( c * c ) % m; x >>= 1; } return s; } int main() { ios::sync_with_stdio( 0 ); Mat p, a; p.mat[0][0] = 0, p.mat[0][1] = 1; p.mat[1][0] = 1, p.mat[1][1] = 1; a.mat[0][0] = 1, a.mat[0][1] = 2; a.mat[1][0] = 0, a.mat[1][1] = 0; cin >> n >> k >> l >> m; ll ans = 0; if( l == 64 || ( 1uLL << l ) > k ) { ans++; p = p ^ n; a = a * p; ll t1 = a.mat[0][0], t2 = ( m + quickp( n ) - t1 ) % m; for( int i = 0; i < l; ++i ) { if( k & ( 1uLL << i ) ) ans = ( ans * t2 ) % m; else ans = ( ans * t1 ) % m; } } cout << ans%m << endl; }
时间: 2024-11-06 11:58:25