zookeeper选举流程

如何在zookeeper集群中选举出一个leader,zookeeper使用了三种算法,具体使用哪种算法,在配置文件中是可以配置的,对应的配置项是”electionAlg”,其中1对应的是LeaderElection算法,2对应的是AuthFastLeaderElection算法,3对应的是FastLeaderElection算法.默认使用FastLeaderElection算法.其他两种算法我没有研究过,就不多说了.

要理解这个算法,最好需要一些paxos算法的理论基础.

1) 数据恢复阶段
首先,每个在zookeeper服务器先读取当前保存在磁盘的数据,zookeeper中的每份数据,都有一个对应的id值,这个值是依次递增的,换言之,越新的数据,对应的ID值就越大.

2) 首次发送自己的投票值
在读取数据完毕之后,每个zookeeper服务器发送自己选举的leader,这个协议中包含了以下几部分的数据:
1)所选举leader的id(就是配置文件中写好的每个服务器的id) ,在初始阶段,每台服务器的这个值都是自己服务器的id,也就是它们都选举自己为leader.
2) 服务器最大数据的id,这个值大的服务器,说明存放了更新的数据.
3)逻辑时钟的值,这个值从0开始递增,每次选举对应一个值,也就是说:如果在同一次选举中,那么这个值应该是一致的 2)逻辑时钟值越大,说明这一次选举leader的进程更新.
4) 本机在当前选举过程中的状态,有以下几种:LOOKING,FOLLOWING,OBSERVING,LEADING,顾名思义不必解释了吧.

每台服务器将自己服务器的以上数据发送到集群中的其他服务器之后,同样的也需要接收来自其他服务器的数据,它将做以下的处理:
1) 如果所接收数据服务器的状态还是在选举阶段(LOOKING 状态),那么首先判断逻辑时钟值,又分为以下三种情况:
a) 如果发送过来的逻辑时钟大于目前的逻辑时钟,那么说明这是更新的一次选举,此时需要更新一下本机的逻辑时钟值,同时将之前收集到的来自其他服务器的选举清空,因为这些数据已经不再有效了.然后判断是否需要更新当前自己的选举情况.在这里是根据选举leader id,保存的最大数据id来进行判断的,这两种数据之间对这个选举结果的影响的权重关系是:首先看数据id,数据id大者胜出;其次再判断leader id,leader id大者胜出.然后再将自身最新的选举结果(也就是上面提到的三种数据广播给其他服务器).代码如下:

if (n.epoch > logicalclock) {
logicalclock = n.epoch;
recvset.clear();
if(totalOrderPredicate(n.leader, n.zxid,
getInitId(), getInitLastLoggedZxid()))
updateProposal(n.leader, n.zxid);
else
updateProposal(getInitId(),
getInitLastLoggedZxid());
sendNotifications();

其中的totalOrderPredicate函数就是根据发送过来的封包中的leader id,数据id来与本机保存的相应数据进行判断的函数,返回true说明需要更新数据,于是调用updateProposal函数更新数据

b) 发送过来数据的逻辑时钟小于本机的逻辑时钟
说明对方在一个相对较早的选举进程中,这里只需要将本机的数据发送过去就是了

c) 两边的逻辑时钟相同,此时也只是调用totalOrderPredicate函数判断是否需要更新本机的数据,如果更新了再将自己最新的选举结果广播出去就是了.

三种情况的处理完毕之后,再处理两种情况:
1)服务器判断是不是已经收集到了所有服务器的选举状态,如果是那么根据选举结果设置自己的角色(FOLLOWING还是LEADER),然后退出选举过程就是了.
2)即使没有收集到所有服务器的选举状态,也可以判断一下根据以上过程之后最新的选举leader是不是得到了超过半数以上服务器的支持,如果是,那么尝试在200ms内接收一下数据,如果没有新的数据到来,说明大家都已经默认了这个结果,同样也设置角色退出选举过程.
代码如下:

/*
* Only proceed if the vote comes from a replica in the
* voting view.
*/
if(self.getVotingView().containsKey(n.sid)){
recvset.put(n.sid, new Vote(n.leader, n.zxid, n.epoch));

//If have received from all nodes, then terminate
if ((self.getVotingView().size() == recvset.size()) &&
(self.getQuorumVerifier().getWeight(proposedLeader) != 0)){
self.setPeerState((proposedLeader == self.getId()) ?
ServerState.LEADING: learningState());
leaveInstance();
return new Vote(proposedLeader, proposedZxid);

} else if (termPredicate(recvset,
new Vote(proposedLeader, proposedZxid,
logicalclock))) {

// Verify if there is any change in the proposed leader
while((n = recvqueue.poll(finalizeWait,
TimeUnit.MILLISECONDS)) != null){
if(totalOrderPredicate(n.leader, n.zxid,
proposedLeader, proposedZxid)){
recvqueue.put(n);
break;
}
}

/*
* This predicate is true once we don‘t read any new
* relevant message from the reception queue
*/
if (n == null) {
self.setPeerState((proposedLeader == self.getId()) ?
ServerState.LEADING: learningState());
if(LOG.isDebugEnabled()){
LOG.debug("About to leave FLE instance: Leader= "
+ proposedLeader + ", Zxid = " +
proposedZxid + ", My id = " + self.getId()
+ ", My state = " + self.getPeerState());
}

leaveInstance();
return new Vote(proposedLeader,
proposedZxid);
}
}
}

2) 如果所接收服务器不在选举状态,也就是在FOLLOWING或者LEADING状态
做以下两个判断:
a) 如果逻辑时钟相同,将该数据保存到recvset,如果所接收服务器宣称自己是leader,那么将判断是不是有半数以上的服务器选举它,如果是则设置选举状态退出选举过程
b) 否则这是一条与当前逻辑时钟不符合的消息,那么说明在另一个选举过程中已经有了选举结果,于是将该选举结果加入到outofelection集合中,再根据outofelection来判断是否可以结束选举,如果可以也是保存逻辑时钟,设置选举状态,退出选举过程.
代码如下:

if(n.epoch == logicalclock){
recvset.put(n.sid, new Vote(n.leader, n.zxid, n.epoch));
if((n.state == ServerState.LEADING) ||
(termPredicate(recvset, new Vote(n.leader,
n.zxid, n.epoch, n.state))
&& checkLeader(outofelection, n.leader, n.epoch)) ){
self.setPeerState((n.leader == self.getId()) ?
ServerState.LEADING: learningState());

leaveInstance();
return new Vote(n.leader, n.zxid);
}
}

outofelection.put(n.sid, new Vote(n.leader, n.zxid,
n.epoch, n.state));

if (termPredicate(outofelection, new Vote(n.leader,
n.zxid, n.epoch, n.state))
&& checkLeader(outofelection, n.leader, n.epoch)) {
synchronized(this){
logicalclock = n.epoch;
self.setPeerState((n.leader == self.getId()) ?
ServerState.LEADING: learningState());
}
leaveInstance();
return new Vote(n.leader, n.zxid);
}

break;
}
}

以一个简单的例子来说明整个选举的过程.
假设有五台服务器组成的zookeeper集群,它们的id从1-5,同时它们都是最新启动的,也就是没有历史数据,在存放数据量这一点上,都是一样的.假设这些服务器依序启动,来看看会发生什么.
1) 服务器1启动,此时只有它一台服务器启动了,它发出去的报没有任何响应,所以它的选举状态一直是LOOKING状态
2) 服务器2启动,它与最开始启动的服务器1进行通信,互相交换自己的选举结果,由于两者都没有历史数据,所以id值较大的服务器2胜出,但是由于没有达到超过半数以上的服务器都同意选举它(这个例子中的半数以上是3),所以服务器1,2还是继续保持LOOKING状态.
3) 服务器3启动,根据前面的理论分析,服务器3成为服务器1,2,3中的老大,而与上面不同的是,此时有三台服务器选举了它,所以它成为了这次选举的leader.
4) 服务器4启动,根据前面的分析,理论上服务器4应该是服务器1,2,3,4中最大的,但是由于前面已经有半数以上的服务器选举了服务器3,所以它只能接收当小弟的命了.
5) 服务器5启动,同4一样,当小弟.

以上就是fastleader算法的简要分析,还有一些异常情况的处理,比如某台服务器宕机之后的处理,当leader宕机之后的处理等等,后面再谈

时间: 2024-11-08 12:02:10

zookeeper选举流程的相关文章

理解zookeeper选举机制

*:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !important; } /* BLOCKS =============================================================================*/ p, blockquote, ul, ol, dl, table, pre { margin: 15px 0; } /* HEAD

zookeeper选举

发起选举流程有两种情况: server刚启动的时候,server的状态初始化为LOOKING状态 server发生异常,切换到LOOKING状态 server有4中状态 LOOKING:初始状态,表示在选举leader FOLLOWING:跟随leader的角色,参与投票 LEADING:集群的leader OBSERVING:不参与投票,只是同步状态 按刚启动来讲述选举流程,QuorumPeer::start() -> QuorumPeer::startLeaderElection() ->

Redis集群分片原理及选举流程

Redis集群分片原理及选举流程 集群分片模式 如果Redis只用复制功能做主从,那么当数据量巨大的情况下,单机情况下可能已经承受不下一份数据,更不用说是主从都要各自保存一份完整的数据.在这种情况下,数据分片是一个非常好的解决办法. Redis的Cluster正是用于解决该问题.它主要提供两个功能: 自动对数据分片,落到各个节点上 即使集群部分节点失效或者连接不上,依然可以继续处理命令 对于第二点,它的功能有点类似于Sentienl的故障转移,在这里不细说.下面详细了解下Redis的槽位分片原理

zookeeper启动流程简单梳理

等着测试童鞋完工,顺便里了下zookeeper的启动流程 zk3.4.6 启动脚本里面 nohup "$JAVA" "-Dzookeeper.log.dir=${ZOO_LOG_DIR}" "-Dzookeeper.root.logger=${ZOO_LOG4J_PROP}" \ -cp "$CLASSPATH" $JVMFLAGS $ZOOMAIN "$ZOOCFG" > "$_ZOO_D

zookeeper选举代码分析

本文将以zookeeper的3.4.6版本作为源码分析版本.主要的代码类包括QuorumPeerMain.QuorumPeer.FastLeaderElection.QuorumMaj等. 假设有a,b,c三个zookeeper服务,serverid分别是1.2.3: 1.先启动集群中的a服务,先投票自己a为leader,并将投票信息发送给自己; QuorumPeerMain对象调用QuorumPeer线程的startLeaderElection方法,最终调用FastLeaderElection

zookeeper选举机制

在上一篇文章中我们大致浏览了zookeeper的启动过程,并且提到在Zookeeper的启动过程中leader选举是非常重要而且最复杂的一个环节.那么什么是leader选举呢?zookeeper为什么需要leader选举呢?zookeeper的leader选举的过程又是什么样子的?本文的目的就是解决这三个问题. 首先我们来看看什么是leader选举.其实这个很好理解,leader选举就像总统选举一样,每人一票,获得多数票的人就当选为总统了.在zookeeper集群中也是一样,每个节点都会投票,如

zookeeper 选举过程

synchronized public void startLeaderElection() { try { currentVote = new Vote(myid, getLastLoggedZxid(), getCurrentEpoch()); } catch(IOException e) { RuntimeException re = new RuntimeException(e.getMessage()); re.setStackTrace(e.getStackTrace()); thr

zookeeper原理解析-选举

1)QuorumPeerMain加载 Zookeeper集群启动的入口类是QuorumPeerMain来加载配置启动QuorumPeer线程.首先我们来看下QuorumPeer, 谷歌翻译quorum是法定人数,定额的意思, peer是对等的意思,那么QuorumPeer中quorum代表的意思就是每个zookeeper集群启动的时候集群中zookeeper服务数量就已经确定了,在每个zookeeper的配置文件中配置集群中的所有机器 server.1=127.0.0.1:2886:3886 s

zookeeper leader选举机制

最近看了下zookeeper的源码,先整理下leader选举机制 先看几个关键数据结构和函数 服务可能处于的状态,从名字应该很好理解 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } 选票参数,还有Notification,参数也都差不多 static public class ToSend { long leader; //leader id long zxid; //选票的zxid long electio