探究drawable图片的加载原理和缩放规律

自定义View系列教程00–推翻自己和过往,重学自定义View

自定义View系列教程01–常用工具介绍

自定义View系列教程02–onMeasure源码详尽分析

自定义View系列教程03–onLayout源码详尽分析

自定义View系列教程04–Draw源码分析及其实践

自定义View系列教程05–示例分析

自定义View系列教程06–详解View的Touch事件处理

自定义View系列教程07–详解ViewGroup分发Touch事件

自定义View系列教程08–滑动冲突的产生及其处理


前言

Android的源码公开策略丰富了手持设备的多样性,但随之而来的却是较为严重的”碎片化”——版本繁多、尺寸多样、功能定制。在Android项目开发中,软件工程师都会面临一个问题:如何适配多不同分辨率的设备?

许多人采用的是这样的方式:利用不同的dimens和drawable资源适配不同分辨率的设备。这么做当然没错,可是它也同时带来一些弊端

  • 在调试UI时挨个修改多个dimen文件中的每个值。

    多数时候会先做一个分辨率出来,比如1920*1080;然后再对照这个效果适配其他分辨率的展示效果。如果要调整某个尺寸的大小,那么先要找到其对应的dimens文件,再去修改。

  • UI标注的困惑

    UI设计师一般只会在一套UI上标注具体的尺寸大小和颜色。比如,只在1920*1080上标注了一个TextView的长度是100px,那么在1280*720上的分辨率上该控件的大小又该是多少呢?自己再换算一下?

  • 多套drawable容易导致APK文件较大。

    图片多了,那么资源所占的体积必然会随之增大;在发布前为了减小APK的大小,可能又不得不做一些瘦身的操作,至于效果有时也觉得不痛不痒,乏善可陈。

  • 不同drawable资源带来的繁琐

    如果某个切图需要修改,那么就需要替换各个drawable中对应的图片。这个过程中,如果错放了或者漏放了某个尺寸的图片,那么又是一个小悲剧了,它会导致图片在某些分辨率的手机上失真

嗯哼,毫不避讳的说:以上这些坑我都掉进去过,有的坑还有点深,快到我脖子了。

当我最后一次掉在坑里的时候,我就下定决心,我要想个办法:一套图片,一套布局,一个dimen完成多分辨率的适配!

哇哈,如果你也有这个想法,那就上车吧!


Android中的度量单位

在此以华为P7为例,解释inch、px、pt、dpi、dip、densityDpi、TypedValue、sp等等Android中常见的度量单位

inch

inch即为英寸,它表示设备的物理屏幕的对角线长度。

比如该例中P7的屏幕尺寸为5英寸,表示的就是手机的右上角与左下角之间的距离,其中1 inch = 2.54 cm

px

pixel简称为px,它表示屏幕的像素,也就是大家常说的屏幕分辨率。

比如在该例中P7的分辨率为1920*1080,它表示屏幕的X方向上有1080个像素,Y方向上有1920个像素。

pt

pt类似于px,但常用于字体的单位,不再赘述

dpi和densityDpi

dot per inch简称为dpi,它表示每英寸上的像素点个数,所以它也常为屏幕密度。

在Android中使用DisplayMetrics中的densityDpi字段表示该值,并且不少文档中常用dpi来简化或者指代densityDpi。

在手机屏幕一定的情况下,如果分辨率越高那么该值则越大,这就意味着画面越清晰、细腻和逼真。

在此,仍然以华为P7为例,计算其dpi值。先利用勾股定理得其对角线的像素值为2202.91,再除以对角线的大小5,即2202.91/5=440.582;此处计算出的440.582便是该设备的屏幕密度。

Android中依据densityDpi的不同将设备分成了多个显示级别:

ldpi、mdpi、hdpi、xhdpi、xxhdpi

这些显示级别分别表示一定范围的dpi,比如160dpi—240dpi都称为hdpi,更多详情请参见下图。

其实,在Android的源码中也定义了这些常量,比如:

public static final int DENSITY_LOW = 120;

public static final int DENSITY_MEDIUM = 160;

public static final int DENSITY_XXHIGH = 480;

嗯哼,在了解了这些之后,现在我们再通过代码来获取设备的dpi值

private void getDisplayInfo(){
    Resources resources=getResources();
    DisplayMetrics displayMetrics = resources.getDisplayMetrics();
    float density = displayMetrics.density;
    int densityDpi = displayMetrics.densityDpi;
    System.out.println("----> density=" + density);
    System.out.println("----> densityDpi=" + densityDpi);
}

输出结果:

—-> density=3.0

—-> densityDpi=480

呃,获取到的densityDpi是480和我们计算出来的屏幕实际密度值440.582不一样。这是为什么呢?

在每部手机出厂时都会为该手机设置屏幕密度,若其屏幕的实际密度是440dpi那么就会将其屏幕密度设置为与之接近的480dpi;如果实际密度为325dpi那么就会将其屏幕密度设置为与之接近的320dpi。这也就是说常见的屏幕密度是与每个显示级别的最大值相对应的,比如:120、160、240、320、480、640等。顺便说一下,看到代码中的density么?嗯哼,其实它就是一个倍数关系罢了,它表示当前设备的densityDpi和160的比值,例如此处480/160=3。为啥是除以160而不是其他数值呢?甭急,马上就会讲到了。

话说,林子大了什么鸟都有,有的手机不一定会选择120、160、240、320、480、640中的值作为屏幕密度,而是选择实际的dpi作为屏幕密度。比如为了发烧而生的小咪手机,它的某些机型的densityDpi就是个非常规的值。

其实,关于这一点,我们从Android源码对于densityDpi的注释也可以看到一些端倪:

The screen density expressed as dots-per-inch.

May be either DENSITY_LOW,DENSITY_MEDIUM or DENSITY_HIGH

请注意这里的措辞”May be”,它也没有说一定非要是DENSITY_LOW、DENSITY_MEDIUM、 DENSITY_HIGH这些系统常量。

好吧,这可能就是Android”碎片化”的一个佐证吧。

dp

density-independent pixel简称为dip或者dp,它表示与密度无关的像素。

如果使用dp作为长度单位,那么该长度在不同密度的屏幕中显示的比例将保持一致。

既然dp与密度无关,那么它与px又有什么关系呢?

在刚提到的Android的多个显示级别中有一个mdpi,它被称为基准密度

正如官方文档所言:

The density-independent pixel is equivalent to one physical pixel on a 160 dpi screen, which is the baseline density assumed by the system for a “medium” density screen.

当dpi=160时1px=1dp,也就是说所有dp和px的转换都是基于mdpi而言的。

比如当dpi=320(即xhdpi)时1dp=2px;当dpi=480(即xxhdpi)时1dp=3px,该过程的换算公式为:

dp * (dpi / 160)

完整的对应关系,请参照下图。

sp

scale-independent pixel简称为sp,它类似于dp,但主要用于表示字体的大小,不再赘述

TypedValue

刚才提到,依据densityDpi的不同将设备分成了多个显示级别:ldpi、mdpi、hdpi、xhdpi、xxhdpi。看到这句话时想必很多人都觉得这个玩意太眼熟了,在res下不是有drawable-ldpi、drawable-mdpi、drawable-hdpi、drawable-xhdpi、drawable-xxhdpi、drawable-xxxdpi文件夹么?是的,但是它们有什么联系么?

之前也说了:Android设备千差万别,不同设备的屏幕密度(densityDpi)自然也就各不相同,有的属于mdpi,某些又属于xhdpi,或者xxhdpi等等其他显示级别。设计师为了让同一个APP在各种手机上都获得较好的显示效果就会针对densityDpi的不同而单独提供一套UI图。

比如,客户要求APP适配显示级别为:ldpi、mdpi、hdpi、xhdpi、xxhdpi的设备,那么UI设计师就需要5套尺寸不一的UI图分别放入res下的drawable-ldpi、drawable-mdpi、drawable-hdpi、drawable-xhdpi、drawable-xxhdpi文件夹里。当手机设备的显示级别为hdpi时,此时APP会去加载drawable-hdpi中对应图片;同理如果手机的显示级别为xxhdpi那么APP就会去自动加载drawable-xxhdpi中的资源图片。

关于此处的这种对应关系,我们再来看一段代码:

/**
 * 原创作者:
 * 谷哥的小弟
 *
 * 博客地址:
 * http://blog.csdn.net/lfdfhl
 */
private void getDrawableFolderDensity(){
    TypedValue typedValue = new TypedValue();
    Resources resources=mContext.getResources();
    int id = getResources().getIdentifier(imageName, "drawable" , packageName);
    resources.openRawResource(id, typedValue);
    int density=typedValue.density;
    System.out.println("----> density="+density);
}

在此,我们可以发现:

如果将图片放入drawable-ldpi中那么density值为120

如果将图片放入drawable-mdpi那么density的值为160

类似地操作总结如下图:

嗯哼,看到这是不是就将densityDpi和TypedValue中的density理解性地结合在一起了呢?说白了,设备会去res下找寻与之适应的资源图片,在这个找寻的过程中判断”是否合适”的方式就是将自身的densityDpi与res文件夹的TypedValue.density字段相比较。

TypedValue中除了刚说的density字段外,还有一个挺重要的方法applyDimension( ),源码如下:

 public static float applyDimension(int unit, float value,DisplayMetrics metrics)
    {
        switch (unit) {
        case COMPLEX_UNIT_PX:
            return value;
        case COMPLEX_UNIT_DIP:
            return value * metrics.density;
        case COMPLEX_UNIT_SP:
            return value * metrics.scaledDensity;
        case COMPLEX_UNIT_PT:
            return value * metrics.xdpi * (1.0f/72);
        case COMPLEX_UNIT_IN:
            return value * metrics.xdpi;
        case COMPLEX_UNIT_MM:
            return value * metrics.xdpi * (1.0f/25.4f);
        }
        return 0;
    }

该方法的作用是把Android系统中的非标准度量尺寸(比如dip、sp、pt等)转变为标准度量尺寸px。在这段代码里,同样可以见到一个density;但是请注意它是DisplayMetrics中的字段而不是TypedValue的,请注意区分。


探究drawable图片的加载

这得从一次掉坑的经历说起。

有天下午,都快下班了,测试妹子跑到我工位前,急匆匆地说:图片失真了。哎,又不是失身,急啥嘛。我慢条斯理地瞅瞅了代码:代码没错呀,以前也都是这些的呀。到底是哪里出了幺蛾子呢?经过一番排查,发现是图片放错了地方:本来是该放到drawable-xxhdpi中的但是小手一抖错放到了drawable-xhdpi中导致了图片放大失真。

嗯哼,这个坑我们可能自己踩过,或者说这个现象我们略知一二,但是导致这个现象的原因是什么呢?它的背后隐藏着什么呢?

来吧,一起瞅瞅。

在此,准备了一张图,该图就是我的CSDN博客头像

图片的宽为144,高为180。

然后在res文件夹下建立drawable-ldpi、drawable-mdpi、drawable-hdpi、drawable-xhdpi、drawable-xxhdpi、drawable-xxxdpi文件夹,并且将该图片放入drawable-xxhdpi中

再利用ImageView显示该图片,代码如下:

<ImageView
    android:id="@+id/imageView"
    android:layout_width="wrap_content"
    android:layout_height="wrap_content"
    android:layout_centerInParent="true"
    android:src="@drawable/lfdfhl"/>

运行之后,看一下效果

最后,在Java代码中获取图片的宽高及其所占内存的大小,代码如下:

private void getImageInfo() {
    mImageView.post(new Runnable() {
        @Override
        public void run() {
            BitmapDrawable bitmapDrawable = (BitmapDrawable) mImageView.getDrawable();
            if (null != bitmapDrawable) {
                Bitmap bitmap = bitmapDrawable.getBitmap();
                int width = bitmap.getWidth();
                int height = bitmap.getHeight();
                int byteCount = bitmap.getByteCount();
                System.out.println("----> width=" + width + ",height=" + height);
                System.out.println("----> byteCount=" + byteCount);
            }
        }
    });
}

输出结果如下:

width=144,height=180,byteCount=103680

嗯哼,获取到的图片宽高和其原本的宽高一致。那么这个byteCount又是怎么算出来的呢?

Android系统在利用drawable中的图片生成Bitmap时默认采用的色彩模式是Bitmap.Config.ARGB_8888;在该模式中一共有四个通道,其中A表示Alpha,R表示Red,G表示Green,B表示Blue;并且这四个通道每个各占8位即一个字节,所以合起来共计4个字节。于是可以算出:144*180*4=103680字节

现在将图片移至drawable-hdpi中,运行后查看效果:

输出结果如下:

width=288,height=360,byteCount=414720

哇哈,看到没有呢?——图片的宽和高都翻倍了,图片所占的内存大小也随之变大了4倍。

继续尝试,在将图片移至drawable-ldpi中,运行后查看效果:

输出结果如下:

width=576,height=720,byteCount=1658880

这就更明显了,图片的宽和高都变大了4倍,图片所占的内存大小也随之变大了16倍。

嗯哼,如果将图片放入drawable-mdpi,drawable-xhdpi,drawable-xxxhdpi中也会发现类似的现象:图片的宽高及其所占内存在按照比例放大或者缩小,详情请参见下图

既然已经看到了这个现象,那就再从源码(Lollipop 5.0)角度来看看当加载drawable中的图片时的具体实现

  1. 调用BitmapFactory中的的decodeResource()加载drawable文件夹里的图片,源码如下:

    public static Bitmap decodeResource(Resources res, int id, Options opts) {
        Bitmap bm = null;
        InputStream is = null;
        try {
            final TypedValue value = new TypedValue();
            is = res.openRawResource(id, value);
            bm = decodeResourceStream(res, value, is, null, opts);
        } catch (Exception e) {
    
        } finally {
            try {
                if (is != null) is.close();
            } catch (IOException e) {
    
            }
        }
    
        if (bm == null && opts != null && opts.inBitmap != null) {
            throw new IllegalArgumentException("Problem decoding into existing bitmap");
        }
        return bm;
    }

    在该方法中第6行调用openRawResource()后,value中就保存了该资源所在文件夹的destiny,这点和刚才的讲解是一致的,不再赘述。在此之后,继续执行decodeResourceStream()

  2. 调用decodeResourceStream( )方法
    public static Bitmap decodeResourceStream(Resources res, TypedValue value,
            InputStream is, Rect pad, Options opts) {
        if (opts == null) {
            opts = new Options();
        }
        if (opts.inDensity == 0 && value != null) {
            final int density = value.density;
            if (density == TypedValue.DENSITY_DEFAULT) {
                opts.inDensity = DisplayMetrics.DENSITY_DEFAULT;
            } else if (density != TypedValue.DENSITY_NONE) {
                opts.inDensity = density;
            }
        }
        if (opts.inTargetDensity == 0 && res != null) {
            opts.inTargetDensity = res.getDisplayMetrics().densityDpi;
        }
        return decodeStream(is, pad, opts);
    }

    在该方法中有两个非常重要的操作。

    第一步:

    为opts.inDensity赋值,请参见代码第6-13行。

    经过操作opts.inDensity会被赋值为120、160、240、320、480、640中的一个值

    第二步:

    为opts.inTargetDensity赋值,请参见代码第14-16行。

    经过操作opts.inTargetDensity会被赋值为手机屏幕的densityDpi

  3. 调用decodeStream()方法

    在该方法中会调用decodeStreamInternal();它又会继续调用nativeDecodeStream( ),该方法是native的;在BitmapFactory.cpp可见这个方法内部又调用了doDecode()它的核心源码如下:

    static jobject doDecode(JNIEnv*env,SkStreamRewindable*stream,jobject padding,jobject options) {
    ......
    if (env->GetBooleanField(options, gOptions_scaledFieldID)) {
        const int density = env->GetIntField(options, gOptions_densityFieldID);
        const int targetDensity = env->GetIntField(options, gOptions_targetDensityFieldID);
        const int screenDensity = env->GetIntField(options, gOptions_screenDensityFieldID);
        if (density != 0 && targetDensity != 0 && density != screenDensity) {
            scale = (float) targetDensity / density;
        }
    }
    }
    const bool willScale = scale != 1.0f;
    ......
    SkBitmap decodingBitmap;
    if (!decoder->decode(stream, &decodingBitmap, prefColorType,decodeMode)) {
    return nullObjectReturn("decoder->decode returned false");
    }
    int scaledWidth = decodingBitmap.width();
    int scaledHeight = decodingBitmap.height();
    if (willScale && decodeMode != SkImageDecoder::kDecodeBounds_Mode) {
    scaledWidth = int(scaledWidth * scale + 0.5f);
    scaledHeight = int(scaledHeight * scale + 0.5f);
    }
    if (willScale) {
    const float sx = scaledWidth / float(decodingBitmap.width());
    const float sy = scaledHeight / float(decodingBitmap.height());
    ......
    SkPaint paint;
    SkCanvas canvas(*outputBitmap);
    canvas.scale(sx, sy);
    canvas.drawBitmap(decodingBitmap, 0.0f, 0.0f, &paint);
    }
    ......
    }

    主要步骤分析如下:

    第一步:

    获取opts.inDensity的值赋给density,请参见代码第4行。

    第二步:

    获取opts.inTargetDensity的值赋给targetDensity,请参见代码第5行。

    第三步:

    计算缩放比scale,请参见代码第8行。

    从这里也可以看出,这个缩放比scale就等于opts.inTargetDensity/opts.inDensity

    第四步:

    得到图片原始的宽和高,请参见代码第18-19行。

    请注意此时的图像在frameworks/base/core/jni/android/graphics/BitmapFactory.cpp中是一个SkBitmap

    第五步:

    依据scale计算缩放后SkBitmap的宽和高,请参见代码第21-22行。

    第六步:

    计算SkBitmap的宽和高缩放的倍数,请参见代码第25-26行。

    在此得到宽的缩放倍数为sx, 高的缩放倍数为sy

    第七步:

    依据sx和sy缩放canvas,请参见代码第30行。

    第八步:

    画出图片,请参见代码第31行。

    至此终于完成了doDecode()版的天龙八部。在梳理了整个过程之后不难发现:对于图片缩放的比例其实还是scale即opts.inTargetDensity/opts.inDensity起了决定性的作用。

    好吧,现在回过头瞅瞅我掉进去的那个坑:我的手机华为P7其dpi值为480,有一张图片我把它放到drawable-xxhdpi里在手机上显示出来是不失真的,非常合适;但是错放到了drawable-xhdpi(其TypedValue的value值为320)后再次显示时发现图片被放大了,而且放大了480/320=1.5倍。既然图片被放大了那么该图片所占的内存当然也变大了。

    这也就解释了我们有时遇到的类似困惑:为什么图片放在drawable-xxhdpi是正常的,但是放到drawable-mdpi后图片不仅仅放大失真而且所占内存也大幅增加了。


后语

至此,对于Andoid中常见的度量单位已经介绍完了;关于drawable的加载原理也做了一个完整分析。

在明白这些之后,我们再去谈多分辨率的适配也就会多了一份从容和自信。


时间: 2024-08-09 02:20:06

探究drawable图片的加载原理和缩放规律的相关文章

使用jQuery实现图片懒加载原理

原文:https://www.liaoxuefeng.com/article/00151045553343934ba3bb4ed684623b1bf00488231d88d000 在网页中,常常需要用到图片,而图片需要消耗较大的流量.正常情况下,浏览器会解析整个HTML代码,然后从上到下依次加载<img src="xxx">的图片标签.如果页面很长,隐藏在页面下方的图片其实已经被浏览器加载了.如果用户不向下滚动页面,就没有看到这些图片,相当于白白浪费了图片的流量. 所以,淘

原生js实现图片懒加载原理

背景:页面图片多,加载的图片就多.服务器压力就会很大.不仅影响渲染速度还会浪费带宽.比如一个1M大小的图片,并发情况下,达到1000并发,即同时有1000个人访问,就会产生1个G的带宽.为了解决以上问题,提高用户体验,就出现了懒加载方式来减轻服务器的压力,优先加载可视区域的内容,其他部分等进入了可视区域再加载,从而提高性能. 1.懒加载原理一张图片就是一个<img>标签,浏览器是否发起请求图片是根据<img>的src属性,所以实现懒加载的关键就是: 在图片没有进入可视区域时,先不给

图片延时 加载原理 及应用

关于 图片延时加载的基本理论: 当我们浏览一个页面时,我们有时候并不会看完一个网页的所有内容,那么我们在客户不浏览完所有内容的情况下,加载完所有的图片就会浪费流量,而且也会影响到网页的加载时间.为了解决这个问题,我们就设计了一种图片延时加载的机制,即当用户将页面快滑到图片的时候,我们开始加载图片,这样既省了流量,而且也不影响用户的体验 下面 我就多篇延时加载举一个例子 首先,我们创建所需的HTML标签及样式 <style type="text/css"> body, div

图片懒加载原理及实现

1.为什么要使用懒加载? 对于图片过多的页面,为了加速页面加载速度, 所以很多时候我们需要将页面内未出现在可视区域内的图片先不做加载, 等到滚动到可视区域后再去加载. 这样子对于页面加载性能上会有很大的提升,也提高了用户体验. 2.如何实现? 其实从原理上看很简单,在页面载入的时候将页面上的img标签的src指向一个小图片, 把真实地址存放在一个自定义属性中,这里我用data-src来存放,如下. <img src="loading.gif" data-src="htt

Android图片异步加载框架Universal Image Loader的源码分析

项目地址:https://github.com/nostra13/android-universal-image-loader 1. 功能介绍 1.1 Android Universal Image Loader Android Universal Image Loader 是一个强大的.可高度定制的图片缓存,本文简称为UIL. 简单的说 UIL 就做了一件事--获取图片并显示在相应的控件上. 1.2 基本使用 1.2.1 初始化 添加完依赖后在Application或Activity中初始化I

Android-Universal-Image-Loader 图片异步加载类库的使用(超详细配置)

这个图片异步加载并缓存的类已经被很多开发者所使用,是最常用的几个开源库之一,主流的应用,随便反编译几个火的项目,都可以见到它的身影. 可是有的人并不知道如何去使用这库如何进行配置,网上查到的信息对于刚接触的人来说可能太少了,下面我就把我使用过程中所知道的写了下来,希望可以帮助自己和别人更深入了解这个库的使用和配置. GITHUB上的下载路径为:https://github.com/nostra13/Android-Universal-Image-Loader ,下载最新的库文件,并且导入到项目的

universal-image-loader图片异步加载

编辑新增: /** 针对listview等加载优化: 监听滑动状态,来设置当前是否要进行加载图片. 滑动状态时不加载,让listview滑动更加流畅. 写法: new PauseOnScrollListener(ImageLoader.getInstance(), false, true, this); 这是一个universal-image-loader中的滑动监听,将它赋给listview的滑动监听即可. 比如:listview.setOnScrollListener( new PauseO

【转】Android-Universal-Image-Loader 图片异步加载类库的使用(超详细配置)

Android-Universal-Image-Loader 原文地址:http://blog.csdn.net/vipzjyno1/article/details/23206387 这个图片异步加载并缓存的类已经被很多开发者所使用,是最常用的几个开源库之一,主流的应用,随便反编译几个火的项目,都可以见到它的身影. 可是有的人并不知道如何去使用这库如何进行配置,网上查到的信息对于刚接触的人来说可能太少了,下面我就把我使用过程中所知道的写了下来,希望可以帮助自己和别人更深入了解这个库的使用和配置.

前端性能优化--图片懒加载(lazyload image)

图片懒加载(当然不仅限于图片,还可以有视频,flash)也是一种优化前端性能的方式.使用懒加载可以想要看图片时才加载图片,而不是一次性加载所有的图片,从而在一定程度从减少服务端的请求 什么是懒加载 懒加载怎么个懒法,就是你不想看就不给你看,我也懒得加载出来,懒得去请求.通俗的说就是你不要就不给你,怎么地.举个栗子,比如在进入某个页面的时候,它会有许多的图片,有些图片可能在下面,当我们点进页面但没有滑动下去或没看完整个页面,那么下面的图片就会"没用",加载了也白加载,而且还降低了网页的加