一、实验目的
本实验通过模拟一个典型的应用场景和实际数据量,测试并对比HAWQ内部表、外部表与Hive的查询性能。
二、硬件环境
1. 四台VMware虚机组成的Hadoop集群。
2. 每台机器配置如下:
(1)15K RPM SAS 100GB
(2)Intel(R) Xeon(R) E5-2620 v2 @ 2.10GHz,双核双CPU
(3)8G内存,8GSwap
(4)10000Mb/s虚拟网卡
三、软件环境
1. Linux:CentOS release 6.4,核心2.6.32-358.el6.x86_64
2. Ambari:2.4.1
3. Hadoop:HDP 2.5.0
4. Hive(Hive on Tez):2.1.0
5. HAWQ:2.1.1.0
6. HAWQ PXF:3.1.1
四、数据模型
1. 表结构
实验模拟一个记录页面点击数据的应用场景。数据模型中包含日期、页面、浏览器、引用、状态5个维度表,1个页面点击事实表。表结构和关系如图1所示。
图1
2. 记录数
各表的记录数如表1所示。
表名 |
行数 |
page_click_fact |
1亿 |
page_dim |
20万 |
referrer_dim |
100万 |
browser_dim |
2万 |
status_code |
70 |
date_dim |
366 |
表1
五、建表并生成数据
1. 建立hive库表
create database test; use test; create table browser_dim( browser_sk bigint, browser_nm varchar(100), browser_version_no varchar(100), flash_version_no varchar(100), flash_enabled_flg int, java_version_no varchar(100), platform_desc string, java_enabled_flg int, java_script_enabled_flg int, cookies_enabled_flg int, user_language_cd varchar(100), screen_color_depth_no varchar(100), screen_size_txt string) row format delimited fields terminated by ‘,‘ stored as orc; create table date_dim( cal_dt date, day_in_cal_yr_no int, day_of_week_no int, start_of_month_dt date, start_of_quarter_dt date, start_of_week_dt date, start_of_year_dt date) row format delimited fields terminated by ‘,‘ stored as orc; create table page_dim( page_sk bigint, domain_nm varchar(200), reachability_cd string, page_desc string, protocol_nm varchar(20)) row format delimited fields terminated by ‘,‘ stored as orc; create table referrer_dim( referrer_sk bigint, referrer_txt string, referrer_domain_nm varchar(200)) row format delimited fields terminated by ‘,‘ stored as orc; create table status_code_dim( status_cd varchar(100), client_error_flg int, status_cd_desc string, server_error_flg int) row format delimited fields terminated by ‘,‘ stored as orc; create table page_click_fact( visitor_id varchar(100), detail_tm timestamp, page_click_dt date, page_sk bigint, client_session_dt date, previous_page_sk bigint, referrer_sk bigint, next_page_sk bigint, status_cd varchar(100), browser_sk bigint, bytes_received_cnt bigint, bytes_sent_cnt bigint, client_detail_tm timestamp, entry_point_flg int, exit_point_flg int, ip_address varchar(20), query_string_txt string, seconds_spent_on_page_cnt int, sequence_no int, requested_file_txt string) row format delimited fields terminated by ‘,‘ stored as orc;
说明:hive表使用ORCfile存储格式。
2. 用Java程序生成hive表数据
ORC压缩后的各表对应的HDFS文件大小如下:
2.2 M /apps/hive/warehouse/test.db/browser_dim 641 /apps/hive/warehouse/test.db/date_dim 4.1 G /apps/hive/warehouse/test.db/page_click_fact 16.1 M /apps/hive/warehouse/test.db/page_dim 22.0 M /apps/hive/warehouse/test.db/referrer_dim 1.1 K /apps/hive/warehouse/test.db/status_code_dim
3. 分析hive表
analyze table date_dim compute statistics; analyze table browser_dim compute statistics; analyze table page_dim compute statistics; analyze table referrer_dim compute statistics; analyze table status_code_dim compute statistics; analyze table page_click_fact compute statistics;
4. 建立HAWQ外部表
create schema ext; set search_path=ext; create external table date_dim( cal_dt date, day_in_cal_yr_no int4, day_of_week_no int4, start_of_month_dt date, start_of_quarter_dt date, start_of_week_dt date, start_of_year_dt date ) location (‘pxf://hdp1:51200/test.date_dim?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘); create external table browser_dim( browser_sk int8, browser_nm varchar(100), browser_version_no varchar(100), flash_version_no varchar(100), flash_enabled_flg int, java_version_no varchar(100), platform_desc text, java_enabled_flg int, java_script_enabled_flg int, cookies_enabled_flg int, user_language_cd varchar(100), screen_color_depth_no varchar(100), screen_size_txt text ) location (‘pxf://hdp1:51200/test.browser_dim?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘); create external table page_dim( page_sk int8, domain_nm varchar(200), reachability_cd text, page_desc text, protocol_nm varchar(20) ) location (‘pxf://hdp1:51200/test.page_dim?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘); create external table referrer_dim( referrer_sk int8, referrer_txt text, referrer_domain_nm varchar(200) ) location (‘pxf://hdp1:51200/test.referrer_dim?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘); create external table status_code_dim( status_cd varchar(100), client_error_flg int4, status_cd_desc text, server_error_flg int4 ) location (‘pxf://hdp1:51200/test.status_code_dim?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘); create external table page_click_fact( visitor_id varchar(100), detail_tm timestamp, page_click_dt date, page_sk int8, client_session_dt date, previous_page_sk int8, referrer_sk int8, next_page_sk int8, status_cd varchar(100), browser_sk int8, bytes_received_cnt int8, bytes_sent_cnt int8, client_detail_tm timestamp, entry_point_flg int4, exit_point_flg int4, ip_address varchar(20), query_string_txt text, seconds_spent_on_page_cnt int4, sequence_no int4, requested_file_txt text ) location (‘pxf://hdp1:51200/test.page_click_fact?profile=hiveorc‘) format ‘custom‘ (formatter=‘pxfwritable_import‘);
说明:HAWQ外部表使用PXF协议,指向相应的hive表。
5. 建立HAWQ内部表
set search_path=public; create table date_dim( cal_dt date, day_in_cal_yr_no int4, day_of_week_no int4, start_of_month_dt date, start_of_quarter_dt date, start_of_week_dt date, start_of_year_dt date) with (compresstype=snappy,appendonly=true); create table browser_dim( browser_sk int8, browser_nm varchar(100), browser_version_no varchar(100), flash_version_no varchar(100), flash_enabled_flg int, java_version_no varchar(100), platform_desc text, java_enabled_flg int, java_script_enabled_flg int, cookies_enabled_flg int, user_language_cd varchar(100), screen_color_depth_no varchar(100), screen_size_txt text ) with (compresstype=snappy,appendonly=true); create table page_dim( page_sk int8, domain_nm varchar(200), reachability_cd text, page_desc text, protocol_nm varchar(20) ) with (compresstype=snappy,appendonly=true); create table referrer_dim( referrer_sk int8, referrer_txt text, referrer_domain_nm varchar(200) ) with (compresstype=snappy,appendonly=true); create table status_code_dim( status_cd varchar(100), client_error_flg int4, status_cd_desc text, server_error_flg int4 ) with (compresstype=snappy,appendonly=true); create table page_click_fact( visitor_id varchar(100), detail_tm timestamp, page_click_dt date, page_sk int8, client_session_dt date, previous_page_sk int8, referrer_sk int8, next_page_sk int8, status_cd varchar(100), browser_sk int8, bytes_received_cnt int8, bytes_sent_cnt int8, client_detail_tm timestamp, entry_point_flg int4, exit_point_flg int4, ip_address varchar(20), query_string_txt text, seconds_spent_on_page_cnt int4, sequence_no int4, requested_file_txt text ) with (compresstype=snappy,appendonly=true);
说明:内部表结构定义与hive表等价,使用snappy压缩的行存储格式。
6. 生成HAWQ内部表数据
insert into date_dim select * from hcatalog.test.date_dim; insert into browser_dim select * from hcatalog.test.browser_dim; insert into page_dim select * from hcatalog.test.page_dim; insert into referrer_dim select * from hcatalog.test.referrer_dim; insert into status_code_dim select * from hcatalog.test.status_code_dim; insert into page_click_fact select * from hcatalog.test.page_click_fact;
说明:通过HCatalog直接查询hive表,插入到HAWQ内部表中。snappy压缩后的各表对应的HDFS文件大小如下:
6.2 K /hawq_data/16385/177422/177677 3.3 M /hawq_data/16385/177422/177682 23.9 M /hawq_data/16385/177422/177687 39.3 M /hawq_data/16385/177422/177707 1.8 K /hawq_data/16385/177422/177726 7.9 G /hawq_data/16385/177422/177731
7. 分析HAWQ内部表
analyze date_dim; analyze browser_dim; analyze page_dim; analyze referrer_dim; analyze status_code_dim; analyze page_click_fact;
六、执行查询
分别在hive表、HAWQ外部表、HAWQ内部表上执行以下5个查询语句,记录执行时间。
1. 查询给定周中support.sas.com站点上访问最多的目录
-- hive查询 select top_directory, count(*) as unique_visits from (select distinct visitor_id, substr(requested_file_txt,1,10) top_directory from page_click_fact, page_dim, browser_dim where domain_nm = ‘support.sas.com‘ and flash_enabled_flg=1 and weekofyear(detail_tm) = 19 and year(detail_tm) = 2017 ) directory_summary group by top_directory order by unique_visits; -- HAWQ查询,只是用extract函数代替了hive的weekofyear和year函数,与hive的查询语句等价。 select top_directory, count(*) as unique_visits from (select distinct visitor_id, substr(requested_file_txt,1,10) top_directory from page_click_fact, page_dim, browser_dim where domain_nm = ‘support.sas.com‘ and flash_enabled_flg=1 and extract(week from detail_tm) = 19 and extract(year from detail_tm) = 2017 ) directory_summary group by top_directory order by unique_visits;
2. 查询各月从www.google.com访问的页面
-- hive查询 select domain_nm, requested_file_txt, count(*) as unique_visitors, month from (select distinct domain_nm, requested_file_txt, visitor_id, month(detail_tm) as month from page_click_fact, page_dim, referrer_dim where domain_nm = ‘support.sas.com‘ and referrer_domain_nm = ‘www.google.com‘ ) visits_pp_ph_summary group by domain_nm, requested_file_txt, month order by domain_nm, requested_file_txt, unique_visitors desc, month asc; -- HAWQ查询,只是用extract函数代替了hive的month函数,与hive的查询语句等价。 select domain_nm, requested_file_txt, count(*) as unique_visitors, month from (select distinct domain_nm, requested_file_txt, visitor_id, extract(month from detail_tm) as month from page_click_fact, page_dim, referrer_dim where domain_nm = ‘support.sas.com‘ and referrer_domain_nm = ‘www.google.com‘ ) visits_pp_ph_summary group by domain_nm, requested_file_txt, month order by domain_nm, requested_file_txt, unique_visitors desc, month asc;
3. 给定年份support.sas.com站点上的搜索字符串计数
-- hive查询 select query_string_txt, count(*) as count from page_click_fact, page_dim where query_string_txt <> ‘‘ and domain_nm=‘support.sas.com‘ and year(detail_tm) = ‘2017‘ group by query_string_txt order by count desc; -- HAWQ查询,只是用extract函数代替了hive的year函数,与hive的查询语句等价。 select query_string_txt, count(*) as count from page_click_fact, page_dim where query_string_txt <> ‘‘ and domain_nm=‘support.sas.com‘ and extract(year from detail_tm) = ‘2017‘ group by query_string_txt order by count desc;
4. 查询使用Safari浏览器访问每个页面的人数
-- hive查询 select domain_nm, requested_file_txt, count(*) as unique_visitors from (select distinct domain_nm, requested_file_txt, visitor_id from page_click_fact, page_dim, browser_dim where domain_nm=‘support.sas.com‘ and browser_nm like ‘%Safari%‘ and weekofyear(detail_tm) = 19 and year(detail_tm) = 2017 ) uv_summary group by domain_nm, requested_file_txt order by unique_visitors desc; -- HAWQ查询,只是用extract函数代替了hive的weekofyear和year函数,与hive的查询语句等价。 select domain_nm, requested_file_txt, count(*) as unique_visitors from (select distinct domain_nm, requested_file_txt, visitor_id from page_click_fact, page_dim, browser_dim where domain_nm=‘support.sas.com‘ and browser_nm like ‘%Safari%‘ and extract(week from detail_tm) = 19 and extract(year from detail_tm) = 2017 ) uv_summary group by domain_nm, requested_file_txt order by unique_visitors desc;
5. 查询给定周中support.sas.com站点上浏览超过10秒的页面
-- hive查询 select domain_nm, requested_file_txt, count(*) as unique_visits from (select distinct domain_nm, requested_file_txt, visitor_id from page_click_fact, page_dim where domain_nm=‘support.sas.com‘ and weekofyear(detail_tm) = 19 and year(detail_tm) = 2017 and seconds_spent_on_page_cnt > 10 ) visits_summary group by domain_nm, requested_file_txt order by unique_visits desc; -- HAWQ查询,只是用extract函数代替了hive的weekofyear和year函数,与hive的查询语句等价。 select domain_nm, requested_file_txt, count(*) as unique_visits from (select distinct domain_nm, requested_file_txt, visitor_id from page_click_fact, page_dim where domain_nm=‘support.sas.com‘ and extract(week from detail_tm) = 19 and extract(year from detail_tm) = 2017 and seconds_spent_on_page_cnt > 10 ) visits_summary group by domain_nm, requested_file_txt order by unique_visits desc;
七、测试结果
Hive、HAWQ外部表、HAWQ内部表查询时间对比如表2所示。每种查询情况执行三次取平均值。
查询 |
Hive(秒) |
HAWQ外部表(秒) |
HAWQ内部表(秒) |
1 |
74.337 |
304.134 |
19.232 |
2 |
169.521 |
150.882 |
3.446 |
3 |
73.482 |
101.216 |
18.565 |
4 |
66.367 |
359.778 |
1.217 |
5 |
60.341 |
118.329 |
2.789 |
表2
从图2中的对比可以看到,HAWQ内部表比Hive on Tez快的多(4-50倍)。同样的查询,在HAWQ的Hive外部表上执行却很慢。因此,在执行分析型查询时最好使用HAWQ内部表。如果不可避免地需要使用外部表,为了获得满意的查询性能,需要保证外部表数据量尽可能小。同时要使查询尽可能简单,尽量避免在外部表上执行聚合、分组、排序等复杂操作。
图2